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                                                                                                                               Summary 

 

Data mining from Scientific Literature (summary)  
Function annotation in the genomic context is one of the major challenges facing the discipline of 

Bioinformatics today. Sequences of entire genomes are continuously being deposited in public databases 

waiting to be analyzed and annotated. Computational methods and data coming out from various types of 

high-throughput experiments are now being used to assist in functional annotations and knowledge 

discovery. Published findings mostly analyzing roles of individual genes are used for gene annotations. 

Similarly, curated sets of facts established in the literature are required in order to check the quality of 

computational methods and analysis of high-throughput data. Hence, there is a great demand for 

information extraction tools to extract structured information about gene and gene products from scientific 

literature automatically and prepare knowledgebases.  

Before one sets on to devise tools for information extraction from scientific literature, several 

questions must be answered. Where does the useful information reside? Is this information structured 

enough to be extracted? What tools should be utilized for accurate retrieval and extraction of information? 

Also, how useful mining of information form biomedical texts is for advancing level of present knowledge? 

Moreover, suitability of tools developed for processing of general English should also be checked for their 

usability for biomedical texts. 

The work presented in this thesis tries to answer questions posed above. Keyword-based analysis 

of full-text articles from Nature genetics was carried out in order to analyze and compare the distribution of 

information in different sections of papers. Keyword based methods while very useful to explore the 

overall structure and article contents don’t provide exact relationships mentioned in the literature. 

Biologically important events and relationships can only be extracted using the structured templates based 

on contents of sentences describing events of interest, which is a non-trivial task. The potential of predicate 

argument structures for providing semantic templates for accurate information extraction was explored for 

verbs describing gene expression, molecular interactions and signal transduction. Predicate argument 

structures (PAS) was defined for important verbs by analyzing sentences from Abstracts as well as full-text 

articles; they were then compared systematically with PropBank PAS for general English in order to 

characterize domain specific usage of predicates in biomedical texts.  

A database of transcript diversity was generated using a composite procedure that combined 

retrieval of appropriate sentences from MEDLINE and extracting information using rules based on PAS. 

Support vector machines proved to be the best sentence categorization/retrieval method when compared to 

other retrieval methods. LSAT – a database of alternative transcripts was generated after the PAS based 

information extraction step. Information residing in LSAT was utilized for MeSH term and gene 

annotations, and studying about the extent of synergy and preference of different transcript diversity 

generating mechanisms by different organ systems.          
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                                                                                                              Resumen en Español 

Resumen en Español 

INTRODUCCIÓN 

La anotación de funciones en el contexto genómico es uno de los mayores retos a los que se enfrenta la 

Bioinformática hoy día. Continuamente, se depositan Secuencias de genomas enteros en bases públicas de 

datos, esperando a ser analizadas y anotadas. Hoy día se utilizan métodos computacionales y conocimiento 

procedente del analisis de experimentos de “high-throughput” en la anotación funcional y descubrimiento 

de nuevo conocimiento. 

Para la anotación de genes se utilizan las publicaciones que analizan genes de manera individual. 

Se necesitan revisiones de hechos publicados en la literatura científica para cubrir las necesidades de 

conocimiento de científicos individuales, para evaluar la calidad de los métodos computacionales y la 

cualidad del análisis de datos de “high-throughput”. Hay, por lo tanto, una gran demanda de herramientas 

de procesamiento de lenguaje natural que puedan extraer automáticamente información estructurada sobre 

genes y sus productos de la literatura científica (Andrade y Bork, 2000; Blaschke et al., 2002; Krallinger et 

al., 2005). 

Antes de ponerse a diseñar herramientas para la extracción de la información (Information 

Extraction, IE) presente en los diferentes apartados de un artículo, se debe responder a varias preguntas: 

¿Basta utilizar los resúmenes (abstracts) como fuente para la IE, o se debe considerar todo el texto? ¿Dónde 

reside la información útil dentro de todo el texto de un artículo? ¿Es esta información diferente en 

diferentes apartados, y esta además suficientemente estructurada para ser extraída?. También: ¿Cuán útil 

puede ser para incrementar el nivel de conocimiento actual la extracción automática de información de 

textos biomédicos?. Más aun, se debería comprobar si las herramientas generales de procesamiento del 

inglés común también pueden ser utilizadas para textos biomédicos. En el trabajo que se presenta a 

continuacion se intenta dar respuesta a estas preguntas analizando el resúmem (Abstract) y el texto 

completo de textos biomédicos empleando varias herramientas derivadas de la tecnología de procesamiento 

del lenguaje natural (“Natural language processing technology”). 

RESULTADOS 

1-Análisis de artículos completos mediante palabras clave 

Los resultados de este apartado estas descritos en el siguiente artículo  (Shah et al., 2003). 

Metodos: Definiendo las palabras clave 

El objetivo del trabajo es comparar la información presente en distintos apartados de un artículo, 

especialmente la diferencia entre el Resumen (Abstract) y el resto del texto. Para ello, se emplearon un total 

de 104 artículos de la revista Nature Genetics, que contienen una estructura regular, a saber: Resumen, 

Introducción, Métodos, Resultados y Discusión (A, por Abstract, I, M, R y D, respectivamente). Para 
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simplificar, el trabajo se centra en la extracción de palabras relevantes (palabras clave, o “keywords”), que 

son palabras que presentan una visión lógica de un documento dado. Para derivar las palabras clave de un 

apartado de un artículo, se analizaron computacionalmente las asociaciones entre las palabras de dicha 

sección. Las oraciones se tomaron como la unidad de texto en la que buscar las asociaciones. Se asumió 

que dos palabras estaban asociadas en el contexto de un apartado si aparecían conjuntamente de manera 

repetida en oraciones dentro del mismo. Se diseñó un esquema de valoración que daba una puntuación [K] 

mayor a palabras con muchas relaciones con otras palabras. En este análisis sólo se consideraron palabras 

definidas como nombre. 

Resultados 

Selección de palabras clave por apartado  

El número de palabras seleccionadas que superan un umbral de K varía en diferentes apartados. 

Encontramos un pequeño número de palabras cuyo valor K era muy superior al resto; esto significa que la 

organización de las palabras posibilita extraer palabras clave para los cinco apartados considerados. El 

número de palabras seleccionadas fue muy similar para todos los apartados, para valores muy altos de K 

(superiores a 0,8). Para un umbral de K >= 0,5, el número resultante de palabras clave fue bastante similar 

para la Introducción y los Métodos (alrededor de 15 cada una),  teniendo cada uno de los otros tres 

apartados unas nueve palabras clave. Sin embargo, si se tiene en cuenta el tamaño de los apartados, es 

obvio que la frecuencia más alta de palabras clave por nombre (seleccionadas con K >= 0,5) se alcanza en 

el Resumen (0,18), seguida por la Introducción (0,08), y quedando después Métodos, Resultados, y 

Discusión. Esto justifica las estrategias de extracción de datos (o “data mining”) que se limitan a analizar 

los resúmenes para minimizar el trabajo computacional; y sin embargo, nuestro resultado indica que no 

todas las palabras clave están en el Resumen, y que por tanto podría valer la pena analizar el resto del texto. 

Heterogeneidad de información entre los distintos apartados 

Con el fin de estudiar la hetogeneidad de la información presente en los distintos apartados, se 

examinaron aquellas palabras clave en común entre apartados. Los resultados indican que no muchas 

palabras clave están presentes en todos los apartados, y que aquéllas que lo están no son muy relevantes. 

Incluso para un umbral bajo de K (K >= 0,3), había una media de sólo una palabra clave general por 

artículo. Éstas suelen ser vocablos no informativos como “gen” o “proteína”. Esto indica que la 

información no está homogéneamente distribuida entre los apartados de un artículo; es decir, distintos 

apartados contienen distintos tipos de información. 

Para cuantificar las diferencias y similitudes de contenido a lo largo del artículo, se comparó el 

número de palabras clave compartidas entre apartados diferentes. Los valores indican que la sección 

Métodos es la más diferente de todas: El contenido de Métodos suele centrarse en las técnicas y protocolos 

utilizados, y no tanto en el fenómeno biológico tratado en el artículo. Esto de por sí ya explica por qué las 

palabras clave presentes en esta sección (“proteína” o “gen”, por ejemplo) son escasas y carecen de interés. 
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Respecto a las similitudes entre apartados, los niveles de similitud entre A, I y D son semejantes, y R es el 

más cercano a M, como se muestra en un dendograma basado en una matriz de distancias (Figura 1). Si 

algún apartado tiene que tratar sobre los métodos utilizados, aparte del propio Métodos, es precisamente el 

de Resultados, porque ahí los procedimientos utilizados son relevantes. La Discusión se centra de nuevo en 

los resultados biológicos (haciendo énfasis en su relación con el conocimiento previo, expuesto en la 

Introducción) sin entrar en detalles sobre las técnicas ya explicadas en Métodos y justificadas en 

Resultados. Esto indica que cada apartado contiene ciertas palabras clave que son únicas del apartado. A 

continuación intentamos caracterizar las diferencias de contenido entre apartados. 

Análisis cualitativo de temas por apartado 

Un conjunto de palabras (no necesariamente seleccionadas como palabras clave) presentes en el 

cuerpo de 104 artículos se clasificó en siete grupos para hacer un análisis más profundo del tipo de 

información residente en cada uno de los apartados. Para hacerlo del modo menos ambiguo posible, se 

utilizaron las palabras (nombres) que encajaban en las descripciones MeSH (Medical Subject Headings) 

para esa misma palabra y que pertenecían únicamente a una de las categorías principales de MeSH (que 

son: Anatomía, Organismos, Enfermedades, Compuestos y Drogas, Técnicas y Equipamiento, y Ciencias 

Biológicas. Se definió una categoría adicional X en este trabajo: Unidades, Dimensiones y Partes). Se 

estudió el número medio de aparición y densidad de las palabras de cada uno de los siete grupos; 

 
Figura 1 – Comparación entre apartados según el contenido en palabras clave: Se muestra 

gráficamente la similitud entre apartados de acuerdo con el contenido en palabras clave.  

 

los resultados indican que los apartados de un artículo son una buena fuente de palabras clave. El Resumen 

parece ser la mejor fuente para la mayoría de los temas, con respecto a la frecuencia de palabras clave, 

excepto para aquellos temas típicos de la sección de Métodos (Técnicas y Equipamiento; Compuestos y 

Drogas). Introducción, Resultados y Discusión contienen una gran cantidad de información relacionada con 

enfermedades, y Métodos tiene muchos términos relacionados con técnicas.  
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2-IE de propósito general, y extracción de eventos 

Este apartado se resume en el siguiente artículo (Wattarujeekrit et al., 2004). 

Los métodos de IE basados en palabras clave proporcionan información sobre el contenido del 

texto estudiado. Sin embargo, no se pueden utilizar para crear tablas estructuradas en bases de datos; para 

ello se requieren herramientas de IE que puedan encontrar los eventos o relaciones exactos que se describen 

en el texto. El objetivo de la IE es proporcionar unidades de conocimiento estructurado a partir de texto 

libre no estructurado, combinando aproximaciones desde áreas tales como el procesamiento de lenguaje 

natural y el aprendizaje de máquinas. La extracción de eventos funciona mediante el uso de registros y 

campos predefinidos, de acuerdo con un contexto particular. Sin embargo, el rendimiento de los métodos 

de IE que utilizan reglas basadas en la sintaxis de las oraciones disminuye por el hecho de que una frase se 

puede escribir de muchos modos diferentes y gramaticalmente correctos. El problema de los patrones 

sintácticos se encuentra en toda suerte de textos, incluidos los científicos (Figura 2). 

La necesidad de relaciones semánticas en la extracción de eventos moleculares 

A continuación se ilustra con un ejemplo la necesidad de relaciones semánticas en la extracción de 

eventos moleculares.En las oraciones describiendo el evento expresión (Figura 2) los campos de 

información son: A – entidad expresada, B – propiedad física de la entidad expresada, y C – localización, 

referida al orgánulo, célula o tejido. En la oración 1 (donde A = la enzima, B = dos isoformas de mRNA de 

2,4 y 4,0 kb, y C = encéfalo), la información necesaria para describir el evento con respecto al campo B se 

distingue utilizando un sintagma preposicional; en cambio, en la oración 2 se utiliza una aposición (donde 

A = dos mRNAs para il8ra igualmente abundantes, B = de 2,0 y 2,4 kb de longitud, C = neutrófilos), sin 

que ello tenga trascendencia en la descripción del evento en que participa. La oración 3 (donde A = RNA y 

proteína para los cuatro TCR transgénicos, y C = células T, sin mencionar B) ilustra otro problema, esta vez 

concerniente a “células T”, porque desde una perspectiva biológica “células T” valdría igualmente como 

fuente o localización, no sólo como un agente desde el punto de vista lingüístico. 

 

(1) El análisis por Northern blot con mRNA de ocho tejidos humanos diferentes mostró que [la 

enzima A] se expresaba exclusivamente en [el encéfalo C], con [dos isoformas de mRNA de 2,4 y 

4,0 kb B]. 

(2) [Dos mRNAs para il8ra igualmente abundantes A], [de 2,0 y 2,4 kb de longitud B], se expresan [en 

neutrófilos C], y surgen del uso de dos señales alternativas de poliadenilación. 

(3) Esta “exclusión alélica funcional” se debe aparentemente al control del proceso de ensamblaje del 

TCR, porque estas [células T C] expresan [RNA y proteína para los cuatro TCR transgénicos A]. 

 

Figura 2 – Ejemplo de diferentes formas de Expresión: La variación superficial de expresiones 

lingüísticas para el evento expresión es clara en las oraciones (1) a (3). La oración 3 enfatiza el hecho de 

que se requiere conocimiento especializado para comprender el significado de la oración (ver el texto). 
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Estos ejemplos muestran que el uso de expresiones sintácticas regulares en textos superficiales no sería 

adecuada para una buena IE, dada la complejidad en estructuras superficiales. Por tanto, un método fiable 

de IE debiera resolver los problemas de dependencia del contexto y multipatrón sintáctico. Tratar con estos 

problemas requiere explotar el conocimiento estructural y semántico en la profundidad de las oraciones del 

texto bajo análisis. Estos requerimientos pueden satisfacerse si se consigue agrupar varias estructuras 

superficiales en una misma estructura predicativa (Predicate-Argument Structure, PAS), representando la 

información con argumentos, los roles semánticos que juegan las distintas entidades junto a un verbo que 

comunica un evento concreto. 

Métodos 

Estructuras predicativas (Predicate-Argument Structures, PAS) 

Con la intención de proporcionar a la “comunidad bio-IE” una fuente fiable de PAS, se preparó 

una base de datos (PASBio) de predicados frecuentemente utilizados en el área de regulación de la 

expresión génica, interacciones moleculares y transducción de señales (Wattarujeekrit et al., 2004). La 

metodología de PASBio se tomó de PropBank (Kingsbury and Palmer, 2002; Kingsbury et al., 2002), la 

base de datos de PAS para el Inglés general, con las adaptaciones apropiadas. Para definir una PAS para 

cada verbo, se hizo una exploración del uso del verbo y el acompañamiento de distintos argumentos a partir 

de una muestra de oraciones procedentes de resúmenes (abstracts) y de artículos enteros. Un verbo podía 

tener varios significados según su uso (por ejemplo, “express” para “hablar” o para “envío rápido”). En 

PASBio se dividieron estos significados con el objetivo de obtener sentidos semánticos unitarios; para ello 

se utilizó el diccionario WordNet (Miller, 1990). Cada registro PAS en PASBio contiene un conjunto de 

argumentos fundamentales, y argumentos auxiliares. Un argumento se considera fundamental si es 

importante para completar el significado del evento descrito en la oración, a los argumentos fundamentales 

se les asignan unas etiquetas ArgX (donde X es un número cardinal, comenzando en 0 e incrementándose 

con cada argumento adicional) y ArgR, además de las etiquetas mnemónicas que tratan sus roles biológicos. 

Resultados 

Algunas conclusiones del análisis son las que siguen: a un argumento se le debería asignar la etiqueta ArgX 

si es un argumento fundamental (desde el punto de vista de la IE) y su rol se justifica durante el evento 

dictado por el predicado. Al argumento que tiene un rol después del evento se le tiene que asignar la 

etiqueta ArgR (de “resultado”). Los predicados encontrados en textos biomédicos son normalmente 

específicos del campo de estudio; es más, tienen conjuntos de argumentos distintos de los que se requieren 

para los predicados del Inglés general. Los argumentos de un predicado no sólo completan la descripción 

de un evento, sino que además pueden modificarlo completamente con su presencia. Argumentos con roles 

como agente, instrumento o localización son comunes entre PAS de textos biomédicos e Inglés general. 

Los roles biológicos de un argumento pueden diferir de sus roles lingüísticos. 
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La base de datos PASBio, que contiene las PAS de predicados de textos biomédicos, está disponible en 

http://research.nii.ac.jp/~collier/projects/PASBio. Aunque PASBio se diseñó para ser utilizada como un 

diccionario semántico específico de textos biomédicos para una IE precisa, se puede utilizar en cualquier 

aplicación que requiera obtener la forma lógica de una oración dada. Tales aplicaciones incluyen 

aprendizaje de máquinas sobre etiquetado semántico de roles, traducción automática, y confección 

automática de resúmenes. 

3-IE sobre la diversidad de tránscritos 

El  trabajo que se describe en este apartado se resume en los siguientes  artículos  (Shah et al., 2005 and 

Shah y Bork, en revisión). 

La generación de diversidad de tránscritos por “splicing” alternativo (Alternative Splicing, AS) y 

mecanismos asociados contribuyen enormemente a la complejidad funcional y a la evolución de los 

sistemas biológicos (Boue et al., 2003). Los numerosos ejemplos de los mecanismos y sus implicaciones 

funcionales se encuentran dispersos en la literatura científica. Por tanto, es crucial tener una herramienta 

que pueda extraer los hechos relevantes automáticamente y reunirlos en una base de conocimiento, lo que 

puede ayudar en la interpretación de datos de los métodos de “high-throughput” y asentar una base más 

firme para el desarrollo de futuras herramientas computacionales. 

Métodos 

Estrategia general para la generación de la base de datos de diversidad de transcritos a 

partir de la bibliografía 

Se diseñó un procedimiento de dos pasos para extraer la información dispersa en MEDLINE sobre 

diversidad de transcritos y su expresión espacio-temporal. En el primer paso se identificaron las oraciones 

con información sobre diversidad de transcritos en los resúmenes de los artículos. Para ello, y para sortear 

el problema de los patrones sintácticos, un conjunto de clasificadores fue entrenado para identificar dichas 

oraciones sobre diversidad de transcritos; los clasificadores estaban basados en distintos algoritmos de 

categorización de texto, y aprendieron con un método inductivo. El mejor clasificador fue entonces 

utilizado para procesar la base de datos MEDLINE entera, identificando unos 14000 resúmenes con 

oraciones describiendo diversidad de tránscritos. En el segundo paso se dividieron las oraciones en sus 

constituyentes, y estos se distribuyeron en ocho categorías semánticas diferentes (etiquetas de argumento. 

Tabla 1). 

La información sobre genoma, transcrito y secuencias de proteínas se asoció a los identificadores de 

PubMed correspondientes utilizando las referencias bibliográficas en bases de datos como Swiss-Prot 

(Bairoch y Apweiler, 2000), Refseq (Pruitt and Maglott, 2001), GenBank (Benson et al., 2004), y Ensembl 

(Birney et al., 2004) cuando fue posible. Por tanto, cada registro en la base de datos LSAT (Literature 

Support for Alternative Transcripts) contiene el título del artículo, el resumen, categorías semánticas 

extraídas de las oraciones, y referencias a otras bases de datos. Esta base de datos contiene, en resumen, 

3063, 769, 105 y 207 ejemplos no redundantes de “splicing” alternativo, uso diferencial de promotor, y 
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poliadenilación alternativa extraídos de la bibliografía y asociados con genes, tejidos y especies. Además, 

los casos de uso alternativo de promotor con nombres de genes y tejidos extraídos en este trabajo son la 

mayor colección de este evento disponible hasta la fecha. Esta colección sería útil en el análisis de regiones 

promotoras. LSAT está disponible en http://www.bork.embl-heidelberg.de/LSAT/. 

Rendimiento en clasificación de oraciones y extracción de información 

Se comparó el rendimiento de la clasificación de oraciones que describen la generación de 

diversidad de tránscritos (con distintas fracciones del conjunto de entrenamiento) con los siguientes 

métodos de clasificación: 1) “naive Bayes”, 2) entropía máxima, 3) “expectation maximization”, 4) “k-

nearest neighbor”, 5) variantes del “term-frequency inverse document frecuency”, y 6) “Support vector 

machines” (SVM). Además se generaron, a partir de los conjuntos de entrenamiento, cuatro grupos 

distintos de rasgos de aprendizaje, con diferentes niveles de riqueza de rasgos. 

El SVM mostró un rendimiento superior a todos los demás en la clasificación de oraciones cuando 

se le entrenó con una “bag of words” como conjunto de entrenamiento. Es más, un SVM con un núcleo de 

función de base radial (Radial Basis Function, RBF) rindió mucho más que SVMs con núcleo linear o 

sigmoide. El clasificador final fue entrenado con valores gamma de 1,5 y C de 10, y “bag of words and 

phrases” como conjunto de rasgos, tras una elaborada optimización de parámetros. Este clasificador 

alcanzó una precisión del 66 % y un “recall” de 74.33 al aplicarlo sobre el MEDLINE entero. La precisión 

y el “recall” para identificar varias categorías semánticas se muestra en la tabla 1. 

 

Semantic Category Presence (%) Recall (%) Precision (%) Total Instances 

Event mechanism 79 92 96 13103 

Gene names 71 82 88 15905 

Tissues 22 87 96 5028 

Species 21 97 99 4093 

Number of isoforms 20 77 100 2965 

Diff. In structure/function 12 63 86 1620 

Experimental methods 11 57 82 1071 

Specificity 5 100 85 1589 

Table 1 – Rendimiento a la hora de extraer categorías semánticas 

Resultados 

Cuantificación de los distintos mecanismos que llevan a diversidad de transcritos 

Mientras se analizaban las oraciones etiquetadas con varias categorías, se encontró que el uso 

diferencial de promotor se daba junto con “splicing” alternativo (AS) en un 12 % de los resúmenes. El 19 

% de los resúmenes que trataban un uso alternativo de primer exón también mencionaban el uso de 
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diferentes promotores. Un 17 % de los resúmenes que describían una poliadenilación alternativa también 

mencionaban un AS. El alcance descrito aquí de esta sinergia entre mecanismos es probablemente una 

subestimación del alcance real, pues el clasificador detecta menos casos de uso diferencial de promotor o 

de poliadenilación alternativa que casos de AS (y en la bibliografía sucede lo mismo, describiéndose 

mucho más el AS que los otros dos fenómenos). 

El peso de cada uno de los mecanismos de generación de diversidad de transcritos podría variar 

según el sistema anatómico y la etapa del desarrollo (Figura 3a; panel superior). Para estudiar dicha 

posibilidad se estudió en qué organos tenían lugar todos los distintos eventos extraídos de la bibliografía 

(limitándose a vertebrados), teniendo en cuenta genes y tejidos; se utilizaron para esto los términos 

anatómicos MeSH. La figura 3 muestra que los cuatro mecanismos de generación de diversidad de 

transcritos se utilizan igualmente en la mayoría de sistemas. Sin embargo, había una representación 

significativamente superior (Figura 3a, panel inferior) de AS en el sistema nervioso, sugiriendo que existe 

una preferencia por este mecanismo en este sistema. Del mismo modo, había una gran frecuencia de uso 

diferencial de promotor en tejidos conectivos, y en menor grado en el aparato digestivo y los genitales.  

Diferencias específicas de tejido en el alcance del “splicing” alternativo 

Disponiendo de una gran cantidad de eventos de AS de alta calidad, las diferencias específicas de 

tejido para el AS debieran ser visibles. Se ha demostrado un papel importante del AS en causar 

especializaciones funcionales en tejidos y etapas del desarrollo (Grabowski and Black, 2001; Yeo et al., 

2004). Se analizaron manualmente los registros en LSAT conteniendo el campo “especificidad”. Tras una 

revisión de la información que faltaba sobre identificador génico y tejidos, encontramos 959 eventos 

describiendo un “splicing” específico de tejido. Los resultados incluían 400 eventos no redundantes para 

183 genes humanos. 190 genes más de varias especies fueron también asociados a identificadores de Swiss-

Prot durante la revisión manual. 

Para estudiar el alcance del AS específico de tejido, agrupamos como antes los órganos y tejidos 

en los sistemas respectivos, y representamos (Figura 3b, panel izquierdo) el alcance observado de AS 

mediante intensidad de colores. El sistema nervioso (L), los genitales (H), el sistema inmune (I), el aparato 

digestivo (D) y el músculo esquelético (K) mostraron una gran especificidad de “splicing”, tanto dentro de 

un mismo sistema como entre sistemas. Hay también casos de transcritos obtenidos por AS exclusivos de 

un sistema, siendo el sistema nervioso el que mostraba la mayor cantidad de estos transcritos únicos. Estos 

patrones de expresión específicos de tejido extraídos de la bibliografía solapan en gran medida con los 667 

eventos de AS específicos de tejido que se dedujeron de los datos de ESTs (Xu et al., 2002) de 454 genes 

humanos en 46 tejidos (Figura 3b, panel derecho). 

El conocimiento extraído de la bibliografía confirma, como también lo hicieron antes ciertos 

trabajos experimentales (Mirnics and Pevsner, 2004), los estudios basados en ESTs (Xu et al., 2002; Yeo et 

al., 2004), que también muestran el uso del AS como mecanismo prevalente en la generación de diversidad 

de transcritos en el sistema nervioso. Estudios basados en ESTs (Yeo et al., 2004) también sugirieron que 

genes del hígado (aparato digestivo) y los testículos (genitales) muestran distintos patrones de “splicing” 
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con exones alternativos. Nuestros resultados indican que estos transcritos podrían mostrar estos patrones 

diferentes de “splicing” en combinación con distintos promotores. Esta conclusión parece plausible si se 

tiene en cuenta que el AS de exones terminales se ve influenciado por promotores alternativos en al menos 

un 19 % de los casos (resultados arriba; (Zavolan et al., 2003)), y se debería seguir explorando.   

También se utilizó el conocimiento en LSAT para asignar el término MeSH “alternative splicing” a los 

1536 resúmenes en MEDLINE que debieran tenerlo pero carecían de él; también se proporcionaron 

anotaciones con respecto a transcritos alternativos para 1860 genes en Swiss-Prot y Refseq y transcritos 

generados de novo.  

CONCLUSIONES 

1.- Hay una necesidad clara de realizar extracción de información de datos biológicos sobre el texto 

completo de artículos científicos. La distribución de información en todo el texto de los artículos científicos 

es heterogénea, y hay una cierta correspondencia entre las secciones del artículo y los distintos tipos y la 

densidad de datos relevantes. 

2.- Los resúmenes (abstracts) de los artículos de ciencias biomédicas son el mejor repositorio desde el 

punto de vista de densidad de palabras clave, y están disponibles en MEDLINE, justificando los métodos 

de extracción de información que utilizan sólo los resúmenes. Sin embargo, hay mucha más información 

relevante en el resto del artículo, especialmente en las secciones de Introducción y Discusión. Es más, la 

información está suficientemente estructurada como para obtener un gran número de palabras clave. 

3.- El análisis de oraciones en resúmenes y texto completo de artículos biomédicos muestra una clara 

necesidad de utilizar conocimiento semántico para una extracción de información precisa. Los registros 

PAS (Predicate-Argument Structure) formalizan la definición de modelos (templates) de extracción 

proporcionando estructuras argumento, las cuales complementan un predicado que describe un evento. 

Además, el conocimiento semántico residente en los registros PAS ayudará a los procesos de extracción 

basados en modelos a resolver el problema de múltiples patrones sintácticos. 

4.- El uso de predicado en los textos biomédicos es específico de dominio o campo de estudio, y por tanto 

se necesita una aplicación PAS específica de dominio para una IE precisa. La utilización de PAS también 

permitirá la creación de un sistema de IE de propósito general para los textos biomédicos. La base de datos 

PASBio generada como parte de este trabajo es prometedora para estas funciones (disponible en 

http://research.nii.ac.jp/~collier/projects/PASBio/). 

5.- La generación y regulación de transcritos alternativos es un evento importante para la diversidad 

funcional y la evolución de los eucariotas. Una base de datos de transcritos alternativos (LSAT) fue 

generada semiautomáticamente utilizando un procedimiento compuesto que contenía identificación de 

oraciones y pasos de extracción de información. LSAT está disponible en http://www.bork.embl-

heidelberg.de/LSAT/
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                                                                                                              Resumen en Español 

a) 

b) 

 
 

Figura 3: (a) Alcance del uso de varios mecanismos generadores de diversidad. (b) El alcance de 

“splicing” específico de tejido observado. Se situaron los tejidos en sistemas corporales según la 

clasificación MeSH. Están señalados con las letras: A: Sistema (sis) cardio-vascular; B: Células; C: Tejidos 

conectivos; D: Aparato digestivo; E: Estructuras fetales o embrionarias; F: Sis endocrino; G: Glándulas 

exocrinas; H: Genitales; I: Sis inmune; J: Sis integumentario; K: Sis muscular esquelético; L: Sis nervioso; 

M: Aparato respiratorio; N: Regiones sensoriales; O: Sistema urinario. 
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. 

6.- Un clasificador basado en “Support vector machines” (SVM) seguido de entropía máxima superó a los 

otros métodos de clasificación de oraciones. SVM con un núcleo de base radial generalizaba bien; son los 

mejores clasificadores de los datos de texto. Un aprendizaje automático de clasificación de oraciones 

también permitió evitar el problema de múltiples patrones sintácticos. Ambos, la clasificación de oraciones 

y los pasos de extracción de información, alcanzaron una buena medida F en el proceso de 

“benchmarking”. 

7.- LSAT tiene gran cantidad de conocimiento, que fue utilizado para la asignación automática de términos 

MeSH y anotaciones de función, tanto a genes en bases de datos de secuencias como a transcritos 

alternativos generados de novo. 

8.- La búsqueda de datos (“data mining”) de LSAT también permitió poner hipótesis a prueba. Los 

resultados de prueba de hipótesis y la comparación con datos de ESTs sugieren que el “splicing” alternativo 

podría ser el mecanismo preferente de generación de transcritos alternativos en el sistema nervioso. Por 

tanto, el “text mining” no sólo ayuda a analizar datos de otras fuentes, sino que además es en sí mismo una 

fuente independiente. 
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                                                                                                                        I. Introduction 

I. - Introduction 
 

1.1. – Prologue-Introduction 
Published literature is the largest and most valuable repository of biological information. A vast majority of 

these articles describe studies carried out on individual genes. This information is mostly recorded in the 

form of free-text articles readable by humans and accessible by machines mostly through shallow keyword-

based search engines. On the other hand, the availability of complete genome sequences of many model 

organisms, and data from high-throughput experimental methods are making it possible to design 

experiments at the whole genome level, ask complex questions and increase the pace of biological 

discovery.  

It is now widely accepted that data generated using high-throughput methods have very high error 

rates and the knowledge derived from the analysis of the data needs to be assessed against the known facts 

from the literature (von Mering et al., 2002). Many systems biology approaches based on data integration 

like STRING have started incorporating the published knowledge as an independent evidence type for 

building probabilistic gene networks (von Mering et al., 2003) Moreover, many existing databases like 

SWISSPROT (Bairoch and Apweiler, 2000), and OMIM (Hamosh et al., 2005) associate literature with 

molecular entities. These databases contain a higher level of relationships, are therefore more informative 

and can be mined for further knowledge discovery. However, manual curation of these databases is limiting 

their growth and reducing the accuracy of the information provided. Thus, there has been a surge of interest 

in using biomedical literature to accomplish different tasks, varying form modest task like finding reported 

gene location on chromosome to more ambitious attempts to construct putative gene networks (Hoffmann 

et al., 2005).  

Regardless of the explicit goal, there are several major hurdles to overcome when using the 

biomedical literature for finding information. The most obvious is the shear number of available articles, 

which is continuously growing. For instance, the most widely used biomedical literature database, NCBI’s 

PubMed, contains over 12 million abstracts but this database by no means covers all the publications in all 

areas related to biomedicine (Figure 1.11).  Another major problem arises when searching for the literature 

relevant to specific entities such as a gene, a protein, or a disease. Since both the English language and the 

biomedicine jargon suffer from several levels of ambiguity, the method may miss relevant papers, as well 

as retrieve irrelevant ones. Yet another issue is the inherent difference between the text that is typically 

searched by current text handling tools and the scientific literature.  Much of the work on text mining aims 

at, and is tested on, articles such as news reports, typically written by professional writers with aim to 

convey a story to masses. In contrast, scientific documents are written by scientists whose first language 

may often not be English, whose primary qualification is research rather than report writing, and whose 

target audience is a relatively small group of fellow scientists, all familiar with the same domain-specific 

jargon. Scientific articles thus often use unexplained but widely understood concepts, non-standard terms 
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and grammatical structures, and include material and background information that may not directly pertain 

to or may even contradict the paper’s main aim point (Netzel et al., 2003). All these factors add a level of 

complexity to the scientific literature, making it harder to mine with standard tools.  

 

Figure 1.11 - Growth of MEDLINE: More than 14 million abstracts are now available from MEDLINE 

covering the articles published in last 65 years. More than 2 million abstracts were added to the database 

last year.   

The work described in this thesis attempts to analyse the text from abstracts in MEDLINE as well 

as full text articles. It concentrates on the development of approaches for reliably extracting useful 

information in order to generate databases and carry out hypothesis testing. In the rest of this section I first 

provide an overview of the work on information extraction (IE) specifically that related to biology, and 

then I describe common methods utilized in the field and in this thesis.  

 

1.2. - Automated handling of text 
Automated handling of text is an active research area, spanning disciplines like Information Retrieval (IR), 

Text Categorization, Natural Language Processing (NLP), Information Extraction (IE) and Text Mining.  

IR mostly deals with finding relevant documents that satisfy a particular information need within a large 

database of documents. Thus, given a user query the IR system perform a query expansion and aims to 

provide all relevant documents in the database to the user. Text classification (or text categorization) is a 
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related problem. The aim of text classification is to automatically assign semantic categories to natural 

language text.  

NLP is a broad discipline concerned with all aspects of automatically processing both written and 

spoken language. IE is a sub-field of NLP, centred on finding explicit entities and facts related to events or 

scenarios in unstructured texts. Finally, text mining is the combined, automated process of analysing 

unstructured, natural language text in order to discover information and knowledge that is typically difficult 

to retrieve. Most of the IE methods, whose goal is to extract descriptions of events, operate at the sentence 

level. The complete description of entire events is achieved by techniques in discourse resolution. 

 

1.2.1. - Logical View of Documents 
Modern computers are making it possible to represent a document by its full set of words and it is 

the most logical view of the documents. However, with very large number of documents, even modern 

computers have to reduce the set of representative keywords (Figure 1.21). This can be accomplished 

through removal of stopwords (such as articles and connectives), use of stemming (which reduces distinct 

words to their common grammatical root), and identification of noun groups (which eliminates adjectives, 

adverbs, and verbs). Further text operations including compression may be employed (see Appendix A). 

Text operations reduce the complexity of document representation and allow moving the logical view from 

that of a full text to a set of index terms or keywords. Keywords provide the most concise logical view of 

the document but its usage might lead to retrieval of poor quality. 

 

 
 

Figure 1.21 - Reducing documents to partial-representations. Documents could be reduced to partial 

representations using various text operations. Some of the operations include spacing, stop word removal, 

part of speech tagging, and stemming.  
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1.3. - An overview of IE methods 
There are many ongoing efforts for Biomedical text mining, but the potential of these methods is yet 

unrealized. Text mining tools are not part of the standard arsenal of biomedical researchers the way search 

engines and sequence alignment tools are. However, just like the sequence analysis field, the bio-IE is 

borrowing tools developed by the computational linguists for general English. The IE efforts in biology 

involve named entity extraction, extraction of relationships and descriptions of entire events, hypothesis 

generation and design of general purpose IE methods. Most efforts in information extraction to date focus 

on using a curated lexica or natural language processing for identifying relevant phrases and facts in texts. 

The techniques include regular expression matching, co-occurrence of terms, statistical methods, advanced 

parsing and machine learning methods. Please see (Andrade and Bork, 2000; Cohen and Hersh, 2005; de 

Bruijn and Martin, 2002; Krallinger et al., 2005; Shatkay and Feldman, 2003) for in depth discussions of 

current approaches for IE in molecular biology.  

 

1.3.1. - Named entity extraction 
In order to identify and extract structured from information texts, recognizing entity names is the 

important first step. Other information can be mined subsequently from a text tagged with entity names. 

Such a task, called named entity (NE) recognition, has been well described in the IE Literature. In Message 

Understanding Conference (MUC), the task of named entity recognition is to recognize the names of 

persons, locations, organizations, etc. in the newswire domain.  

The first challenge in biomedical information extraction is to recognize NE like gene or proteins 

GENIA ontology includes 23 distinct entities including multi-cell, mono-cell, virus, body-part, tissue, 

organism, cell-line and others (Kim et al., 2003). Relationship (e.g., protein-protein interactions, signal 

transduction pathways) extraction can be performed from texts tagged with entity names (Hoffmann et al., 

2005).  Various features of biomedical named entities could be used for accurately identifying them. Such 

features include word formation pattern, morphological cues, part of speech tags, head noun trigger and 

dependency relationships (Zhou et al., 2004).  Several methods are now available for named entity 

extraction (Alphonse et al., 2004; Collier et al., 2002; Fukuda et al., 1998; Tanabe and Wilbur, 2002) and at 

least two community wide efforts for this task have been organized in the past . NE extraction wasn’t 

attempted in this thesis instead the goal was higher level IE for event extraction.   
 

1.3.2. - Relationship extraction  
The earliest effort for relationship extraction from biomedical texts was aimed at extracting 

sentences discussing gene location on chromosomes using hidden Markov models (Leek, 1997). In the case 

of sentences describing location, the constituents are gene and chromosome names, words describing 

location, and terms denoting experimental methods that validate the location of a gene on a chromosome. 

Craven et al developed systems to distinguish fact-bearing sentences from “uninteresting” sentences for 
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identifying protein sub-cellular localization and gene-disorder association (Craven and Kumlien, 1999). 

Their naïve Bayes classifier that doesn’t use grammatical rules achieved a precision of 77% and a recall of 

30%. The classifier that used grammatical rules and parsing of sentences achieved a higher precision (92%) 

but a lower recall (21%).  An important result of these experiments is the comparison of classifiers to a 

baseline method, which uses co-occurrence alone. The latter method decides that a sentence reports a 

“subcellular localization” fact if both a protein name and a localization word occur in it. This simple 

method, which is currently most popular in context of literature mining in Bioinformatics, reaches a much 

lower precision than the classifiers (about 35% precision at recall 30% and 45% precision at recall 21%). 

The co-occurrence based method can reach a higher level of recall (~70%) without losing much in 

precision (~40%). However, at this higher recall level, a naïve Bayes classifier with a noisy-or combination 

still reaches a somewhat higher level of precision (~45-50%). The study suggests that classifiers at the 

sentence level have the potential to improve precision of information extraction, in the biomedical context, 

over co-occurrence-based methods.     

Co-occurrence based methods have been used widely for detecting protein-protein interactions 

while analysing gene expression data. The problem with the co-occurrence based methods is that it yields 

no information about the types relations described in the literature and therefore co-occurrence results may 

be misleading (e.g., in case of negative sentences). NLP based approaches have been carried out for 

extraction of protein-protein interactions, interesting keywords, gene-drug relationships, mutations, roles of 

residues in protein function, and regulation of gene expression. These methods utilize regular expressions, 

methods from the domain of machine learning, and computational linguistics for natural language 

processing (Alphonse et al., 2004; Blaschke et al., 1999; Donaldson et al., 2003; Marcotte et al., 2001; 

Novichkova et al., 2003; Ono et al., 2001; Pustejovsky et al., 2002; Rindflesch et al., 2000; Sekimizu et al., 

1998).  

Relationship extraction: an example 
Saric and co-workers carried out relationship extraction for generating gene regulatory networks 

for the Baker’s yeast (S. Cerviciae) from the information published in MEDLINE (Saric et al., 2004). Their 

work involved six levels that are tokenization and identification of multi-words, POS-Tagging, semantic 

labelling, named entity chunking, relation chunking, and output and visualization. In the process, they 

improved tagging accuracy of a POS tagger trained on general text by retraining it on GENIA corpus. They 

defined a simplified ontology that represented biological knowledge about transcription regulation (Figure 

1. 31). They concentrated on sentences with different verbs that defined events of activation (e.g., enhance, 

increase, and induce), repression (e.g., blocks, decreases, down regulate), regulation (e.g., affect and 

control) and gene transcription (e.g. encode). Their system identified 441 pair wise relations from 58,664 

abstracts with an accuracy of 83-90% (Figure 1.31).       
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Figure 1.31 - Relationship extraction for transcription regulation: The first half of the figure shows a 

simplified ontology for transcription regulation process. The box colours for each term signifies its 

semantic role in relations: regulator (white), target (black), or either (grey). The extracted network is shown 

in the right side with the similar roles in red, blue and green colours, respectively (Saric et al., 2004). 

 

1.3.3. - Hypothesis generation 
Knowledge in biomedical literature has also been used for hypothesis generation. By combining 

knowledge in gene ontology and MeSH terms, the G2D system proposes candidate disease genes in human 

genome for genetically inherited diseases (Perez-Iratxeta et al., 2002). This was achieved by calculating 

fuzzy associations between different keyword systems in GO (Lewis, 2005), MEDLINE and LocusLink 

(Pruitt and Maglott, 2001). On a smaller scale, Srinivasan and Libbus identified therapeutic usage of 

turmeric on the retinal diseases, Crohn’s disease and spinal cord injuries (Srinivasan and Libbus, 2004).       

1.3.4. - Integration Frameworks 

Several research groups are developing integrated text mining frameworks intended to be able to 

address a variety of user needs. The MedScan system combines lexicons with syntactic and semantic 

templates into extract relationships between biomedical entities (Daraselia et al., 2004; Novichkova et al., 

2003). The PubMatrix tool displays two dimensional comparisons of gene names and functional terms 

based on combining the results of multiple queries to PubMed (Becker et al., 2003). The BioRAT system is 

another template based system that combines a template design tool with a web spider that locates and 

retrieves full text journal articles (Corney et al., 2004). The Textpresso system uses a specially created 

ontology to flexibly combine keywords and concept co-occurrence searching of Caenorhabditis elegans 

literature at the sentence level (Muller et al., 2004). It performs both the IR and the IE tasks. There are 
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other frameworks such as TXTGate (Glenisson et al., 2004) and those reported by Nenadic (Nenadic et al., 

2003) and Chiang (Chiang et al., 2004). All the systems are still in their development phase and their value 

haven’t been strictly assessed. Representative systems in text-mini are summarized in Table 1.31.         

1.3.5. - Ontologies in Biology 

The term ontology is becoming more and more popular in biology and related fields. It is used to 

refer too many things, amongst which are controlled vocabularies (e.g., Medical Subject Heading Terms), 

taxonomies (e.g., Gene Ontology), conceptual model of a given domain (as description of rules to infer new 

knowledge), or a combination of parts of or all of the above. Every term in ontology could be considered as 

representing a concept. Here I describe two ontologies commonly used in molecular biology research.   

The Medical Subject Headings (MeSH) thesaurus is a controlled vocabulary produced by the National 

Library of Medicine and used for indexing, cataloguing and searching for biomedical and health related 

information and documents. One or more MeSH terms, comprising one or more concepts, grouped 

together, form a descriptor class. The descriptor class is a basic building block of the thesaurus. 

Hierarchical relationships are defined (as parent-child) among the descriptor classes. Each abstract 

available from PubMed database at NCBI are annotated with up to 20 MeSH terms. User queries are 

expanded and searched against the MeSH terms. The hierarchical structure in MeSH allows for retrieval of 

broader or narrower retrieval sets.      

The gene ontology (GO) project provides structured, controlled vocabularies and classifications 

that cover several domains of molecular and cellular biology (Lewis, 2005). GO ontologies describe 

attributes of gene products in terms of molecular function, biological process and cellular component. The 

vocabularies are structured in a classification that supports ‘is-a’ and ‘part-of’ relationships. For many 

purposes, in particular reporting results of GO annotations of genome, cDNA collections and microarray 

data the curators provide ‘GO slim’, a subset of GO. Recently, Sequence Ontology (SO) has been made 

available to describe the classification and standard representation of sequence features (Eilbeck et al., 

2005).  

Task 2 of BioCreative 2004 workshop was focused on extracting relevant GO codes from the free 

text. Full-text articles were used in the task and the participating systems were evaluated by mouse genome 

curators for their usefulness. The system precisions ranged between 2% and 80%. The recall wasn’t 

evaluated. This task is particularly difficult as the systems had to get the text, the gene and the GO codes all 

correct simultaneously.  
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 Basic features URL 
Repositories 
PubMed/Entrez Biomedical citation retrieval www.ncbi.nlm.nih.gov/entrez

GENIA Corpus Annotated corpus related to human 
blood cell transcription factors www-tsujii.is.u-tokyo.ac.jp/GENIA 

BioCreative 
corpus 

Corpus of protein annotation of 
relevant text pages 

www.pdg.cnb.uam.es/BioLINK/BioCreativ
e.eval.html

Assessments 
BioCreative 
Challenge 

Text mining of protein names and 
annotations 

www.pdg.cnb.uam.es/BioLINK/BioCreativ
e.eval.html

KDD challenge Information extraction of Drosophila 
gene expression information 

www.biostat.wisc.edu/~craven/kddcup/task
s.html

TREC Genomics 
track 

IR, document classification and 
question answering in biology domain lr.ohsu.edu/genomics 

NLPBA challenge Protein and gene name identification www.genesis.ch/~natlang/JNLPBA04
Information Retrieval 
PubMed/Entrez Biomedical literature retrieval tool www.ncbi.nlm.nih.gov/entrez

XplorMed Iterative retrieval and extraction of 
abstracts www.bork.embl.de/xplormed/ 

Google Scholar Literature search engine scholar.google.com 
CrossRef search Full content search engine www.crossref.org/crossrefsearch.html
Name recognition 
AbGene Protein/gene name tagger ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe
GAPSCORE Protein/gene name tagger bionlp.stanford.edu/gapscore 
NLProt Protein/gene name tagger cubic.bioc.columbia.edu/services/nlprot 
Protein (set) function 
PubGene Text mining tool for microarrays www.pubgene.org
MedMiner Extract gene relevant sentences discover.nci.nih.gov/textmining/main.jsp 
iProLINK Protein annotation and tagging pir.georgetown.edu/prolink 
Textpresso C.elegans literature IR/IE tool medblast.sibsnet.org 

KAT Annotate protein from scientific 
literature www.bork.embl.de/kat

Protein Interactions 
Chillbot Relationship extraction tool www.chillbot.net

GeneScene IE of regulatory pathways econport.arizona.edu:8080/NetVIs/index.ht
ml 

PreBIND Classifier of protein interaction 
documents bind.ca 

Protein network exploration 

iHOP Literature based gene and protein 
network www.pdg.cnb.uam.es/UniPub/iHOP

STRING Gene and protein network, uses 
literature string.embl.de 

Knowledge discovery 
ARROWSMITH Extended MEDLINE search kiwi.uchicago.edu 
G2D Identification of disease genes www.bork.embl.de/G2D
BITOLA Literature based biomedical discovery www.mf.uni-lj.si/biotla

Table 1.31 - Representative list of systems for biomedical text handling: [modified from (Hoffmann et 

al., 2005)] 
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1.4. – Event extraction 
Event extraction is defined as automatically finding, within a text, instances of a specified type of event, 

and filling a database with information about the participants and circumstances of the event. 

1.4.1. - Events in Molecular Biology   

According to Gene Ontology (GO) Consortium the term biological process refers to a broad 

category of biological tasks accomplished via one or more ordered assemblies of molecular entities or gene 

products (Lewis, 2005). It often involves transformation, in the sense that something goes into a process 

and something different comes out of it. Examples of biological processes are cell growth and maintenance, 

signal transduction, metabolism and biosynthesis etc.  

A biological process can be subdivided into temporal and spatial molecular events. Each 

molecular event is carried out by a gene product or well-defined assemblies of them. For example, 

phosphorylation of a protein molecule by a protein kinase is a molecular event, which is a part of the 

cellular signaling process. Similarly, transcription of a gene by a polymerase is a part of the gene 

expression process. Hence, by definition, a molecular event or a disruption of it will have a local effect in 

terms of the process that it is a part of and an observable or phenotypic effect in terms of the overall effect 

of disruption of the entire process. For example, pre-mature termination of translation due a pre-mature 

stop codon arising by a mutation in the coding region of a gene could be considered as a local effect and the 

disease state of an organism due to deficiency of that protein could be considered as the phenotypic effect.  

 

1.4.2. - Template based extraction of relationships and events 
IE, based on the MUC tradition of task segmentation (McCallum and Nigam, 1998) works 

fundamentally by using predefined frames and slots in agreement with a specific scenario describing user 

requirements. Such systems typically use regular expressions to match facts for the event to be extracted in 

each sentence. Each logical form is based upon the syntactic relationship between components in each 

sentence. For instance, if we wanted to extract facts relating to a scenario (alternative splicing) then 

patterns such as “np (the difference) + in (in) + np (the splicing pattern) + pp (in (of) + np (the first intron)) 

+ vp (is mouse-specific)” and “np (Alternative splicing) + vp (vbz (occurs) + in (at) + np (the 5’ region) + 

pp (of the ATR1))” could be developed as templates. Sentences constituents which contain information 

about the mechanism, exon/intron position, gene names, species etc. need to be extracted. This task is 

difficult because a single event can nearly always be written in a variety of syntactic forms due to 

mechanistic and linguistic aliterations. 

 

1.4.3. - Spray alterations and problem of syntactic patterns in IE 
The following simple example involves a linguistic phenomenon sometimes called locative 

alternation or spray alternation (Levin, 1993). The verb spray may express its arguments in at least two 

different ways, i.e. (a) “Peter sprayed water on his flowers.” and (b) “Peter sprayed his flowers with 
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water.” Thus, two syntax-based regular expressions plus some information about NE as np (peter) + vp 

(spray) + np (object1) + pp (on) + np (object2) and np (peter) + vp (spray) + np (object2) + pp (with) + np 

(object1) are required. 

Extraction patterns can be hand built or based on machine learning (ML) from a corpus (a sample 

of annotated text) or from a few patterns which are known to be good indicators of the topic of interest 

(seed patterns) to reduce the cost and time in constructing patterns manually (Alphonse et al., 2004; Hobbs 

et al., 1997; Riloff, 1993; Riloff, 1996; Yangarber, 2003; Yangarber et al., 2000). However, to extract the 

relations between objects in the complex sentences that occur in technical and scientific texts requires 

deeper knowledge. Most of the existing systems use a set of rules relevant to syntactic roles (e.g. subject, 

object, and modifier) obtained from parsers, together with surface level patterns to extract the interactions 

between genes or gene products from the biological literature (Ono et al., 2001; Pustejovsky et al., 2002; 

Rindflesch et al., 2000; Sekimizu et al., 1998). Although extending the systems with syntactic roles or 

syntactic functions can help achieve better performance compared to the pure pattern-matching approach, 

errors resulting from a lack of semantic understanding still remain (Ono et al., 2001). For example, the 

system of Ono et al. will incorrectly extract a protein interaction between “Msp1p” and “Dec1p” from a 

sentence “These findings suggest that Msp1p is a component of the secretary vesicle docking complex 

whose function is closely associated with that of Dec1p.”, because it conforms to the pattern “A [associate 

with] B” predefined within the system. In this respect deeper knowledge, describing the semantic 

relationships between verbs and its arguments is needed to overcome difficulties posed by syntactic 

patterns. 

 

1.4.4. - Need for Semantic Relationships in Molecular Event Extraction 
The issue of syntactic patterns is encountered in texts of all domains including scientific texts (Figure 1.41). 

(1) [A One mutation] eliminates [B the BamH1 site] in [C exon 7] and … 

(2) The same high level of activation of B-Raf occurs only when [B all three sites] are eliminated

(3) One of the three remaining families carried [A a 3-bp in-frame deletion] that would eliminate an [B 

asparagin residue] within [C a kinase domain of the product]; the … 

Figure 1.41 - Example of different forms of eliminate: Three different sentences containing the predicate 

eliminate illustrate the existence of multiple syntactic patterns in the biomedical texts. These sentence may 

be written in various forms but convey the information marked as […A] or […B] or […C].  

 

The sentences show different instances of the event eliminate taken from corpus of biomedical 

texts (Figure 1.41). Here, there may be 3 different pieces of information to be extracted, i.e. A – causal 

agent of the event, B – the entity being removed, C – location at molecular (sequence) or cellular level 

where the entity is being removed. Sentence 1 shows the simple indicative form for which the syntactic 

extraction pattern would be “A eliminates B in C” (where A=One mutation, B=the BamHI site and 
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C=exon7); sentence 2 shows the passive form, without mention of A and C, for which the syntactic 

extraction pattern would be “B are eliminated” (where B=all three sites); sentence 3 utilizes a different 

preposition compared to sentence 1 in order to mention C, for which syntactic extraction pattern would be 

“A would eliminate B within C” (where A=a 3-bp in-frame deletion, B=an asparagines residue and C=a 

kinase domain of the product). 

 

(1) Northern blot analysis with mRNA from eight different human tissues demonstrated that [A the enzyme] 

was expressed exclusively in [C the brain], with [B two mRNA isoforms of 2.4 and 4.0 kb]. 

(2) [A Two equally abundant mRNAs for IL8RA] , [B 2.0 and 2.4 kilobases in length] , are expressed in [C 

neutrophiles] and arise from usage of two alternative polyadenylation signals.  

(3) This “functional allelic exclusion” is apparently due to control of the TCR assembly process because 

these [T-cells] express [A RNA and protein for all four transgenic TCR proteins]. 

 

Figure 1.42 - Example of different forms of express: The surface variation of linguistic expressions is 

clear from sentences (1)-(3) for the event express. Sentence (3) emphasizes the fact that domain knowledge 

is necessary for understanding the sentence (see the text). 

 

In the sentences describing the event express (Figure 1.42) the information slots are A – expressed 

entity, B – physical property of the expressed entity, and C – location referring to the organelle, cell or 

tissue. In sentence 1, (where A= the enzyme, B=two mRNA isoforms of 2.4 and 4.0kb, C=brain) the 

information needed to describe the event with respect to the slot B is marked by using a prepositional 

phrase, but using an appositive form in sentence 2, (where A=two equally abundant mRNAs for il8ra, 

B=2.0 and 2.4 kilobases in length, C=neutrophils), seemingly not playing an important role in the 

description of the event in which it participates. Sentence 3, (where A=RNA and protein for all four 

transgenic TCR proteins and C=T cells, without mentioning B) illustrates a different problem involving “T-

cells”, because from a biological perspective “T cells” would qualify as source/location rather than as an 

agent from a linguistic point of view. 

These examples show that extraction using regular expressions around syntactic information of the 

surface texts would not be adequate for high performance IE due to complexities in surface structures. 

Instead, mapping of various surface structures into the same predicate argument structures (introduced 

below) would be beneficial, as it represents the information describing the arguments and the semantic 

roles these arguments play with a verb that conveys a certain event. 
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1.5. - Predicate Argument Structures 
In natural language sentences, an event or relation is expressed as a verb, and the participants involved are 

expressed as the arguments of the verb. A verb, which indicates a particular type of event conveyed by a 

sentence, can exist in its verbal form, its participial modifier format or its nominal form. For example, the 

normal form of a verb used to describe the event “making something active” would be activate, its 

participial modifier format would be activating or activated, and its nominal format would be activation. 

The participants in the description of events or relations may have specific roles. The common technical 

name for them is argument structure and the verb that specifies the argument structure is called the 

predicate. It is common to refer to the contents of arguments with labels where such roles are usually 

specified. Meaning can be determined in several ways such as a domain or predicate-specific fashion such 

as catalyst and reaction being catalyzed in case of the first and second arguments to the predicate catalyze. 

Alternatively, functional roles can be employed such as thematic relations that try to express some 

linguistically motivated aspect of the argument’s behaviour such as agent, location or experiencer.  

Traditional IE systems that use regular expressions based on shallow chunking at the phrase level 

(e.g. noun phrase, verb phrase, preposition phrase) capture weak notions of ‘argument’ for event predicates 

and their linear precedence. Such approaches seem to be inadequate to the goal of achieving high 

completeness and accuracy in event extraction. In recognition of this several major projects for generating 

predicate argument structures (PAS) have now begun for general English from newswire texts (Baker et al., 

1998; Kingsbury and Palmer, 2002; Kingsbury et al., 2002; Kipper et al., 2000). They examine relations 

that exist between the constituents in a sentence with the key assumption that those arguments correspond 

to major objects in events of interest. Although constructing PAS frames by hands seems to be expensive in 

terms of time and effort, particularly where this requires insights from domain specialists, this is justified as 

they provide a systematic reference guide for improving performance compared to the ad-hoc pattern 

building.  

For PAS to be realized within IE, three major knowledge components are required: (1) a hierarchy 

of concept categories for the objects of interest; (2) a definition of predicate-argument frames and the 

semantics of their arguments; and (3) the mapping rules that define how to transform the relevant parts of a 

surface sentence to the arguments in the PAS frame. Currently (1) is already quite advanced with several 

controlled vocabularies such as MeSH (Nelson et al., 2000) or Gene Ontology  (Lewis, 2005) are now 

widely in use. At a more modest level core domain specific ontologies for individual annotation schemes 

such as the GENIA project (Kim et al., 2003) have also been proposed. However, there are no proposals for 

(2) for biomedical texts which may serve as the basis on which annotated resources could be developed for 

machine learning approaches to (3).  
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1.5.1. - Resources for PAS 
Several major projects provide PAS for verbs in common English. These projects include VerbNet 

(Kipper et al., 2000), FrameNet (Baker et al., 1998), and PropBank (Kingsbury and Palmer, 2002; 

Kingsbury et al., 2002). However, there are methodological differences among these three projects. 

Example PAS of verbs sell and rent from these projects illustrates this point (Figure 1.51).  

 

VerbNet : PAS for verb group: Give 

Verb Members: give, sell, rent, render, refund, peddle, pass, loan, lend, lease 

Arguments: 

0 : Agent 

1: theme 

2: recipient 

Sentence 1: [Arg0Michael] sold [Arg1it] for $60 a bottle.  

Sentence 2: [Arg0Mary] rented [Arg1a room] to [Arg2John] for a week, then evicted him 

 

FrameNet : PAS for Event: Commerce_sell 

Event Definition: Basic commercial transaction from the perspective of the seller 

Verb Members: sell, rent, charge, lease, retail, vend 

Arguments: 

0 : seller 

1: goods 

Sentence 1: [Arg0Michael] sold [Arg1it] for $60 a bottle.  

Sentence 2: [Arg0Mary] rented [Arg1a room] to John for a week, then evicted him 

 

PropBank   

Verb: Sell 

Arguments: 

0: seller 

1: thing sold 

2: buyer 

3: price paid 

4: term 

Verb: Rent 

Arguments: 

0: landlord 

1: thing rented 

2: renter 

3: rent 

4: term 

Verb Members: sell, rent, charge, lease, retail, vend 

Sentence 1: [Arg0Michael] sold [Arg1it] for [Arg3$60 a bottle].  

Sentence 2: [Arg0Mary] rented [Arg1a room] to [Arg2John] for [Arg4a week], then evicted him 

 

Figure 1.51 - PAS definitions for sell and rent as defined by PropBank, VerbNet and FrameNet.   
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PropBank defines two distinct PAS for two distinct verbs while there is a single structure for both 

verbs in the case of VerbNet and FrameNet (Figure 1.51; top panel). In VerbNet, a general PAS is defined 

for a group of verbs that share similar syntactic behaviour, as suggested by Levin’s alternations theory 

(Levin, 1993). Thus, VerbNet has a common PAS frame for give, sell and rent.  Argument roles for all of 

these verbs are assigned for agent, theme, and recipient illustrated by example sentences 1 and 2. In the 

case of FrameNet, PAS is defined based on the underlying principal of what users or applications expect to 

see for a specific event definition.  

FrameNet’s PAS for event Commerce_sell expects only argument seller and goods from the event 

driven by any verb in a set of verb members (Figure 1.51; middle panel). Considering the annotation on 

sentence 1 in all projects, “All Brownstein” is annotated as seller, agent, and seller in PropBank, VerbNet, 

and FrameNet respectively. Similarly, there is also an argument to support the annotation of “it” in all 

projects. But, only the PropBank scheme has an argument labeled price paid to support element “$60 a 

bottle” of sentence 1 which is an important participant of the event describing the selling activity. 

Moreover, a constituent “a week” in sentence 2 is considered to be an argument labeled as term only by the 

PropBank scheme. The arguments like price paid for the events driven by a verb sell, and an argument term 

for events driven by a verb rent, are considerably important for down stream user applications. Also, in 

contrast to VerbNet and FrameNet, PropBank defines individual verb-specific PAS frames which are likely 

to contain more detailed specifications of arguments than are possible for verb groupings (Figure 1.51; 

bottom panel). Moreover, PAS construction in a more verb-specific manner than either VerbNet or 

FrameNet would assist explicitly in discovering rules for mapping from surface syntactic structures to 

underlying semantic propositions. Hence, PropBank’s scheme for defining PAS is desirable as a basic 

starting point for generating PAS frames in molecular biology. 

 

1.5.2. - Introduction to PropBank  
PropBank PAS frames are based on an analysis of sentences in the Wall Street Journal corpus. In 

PropBank a verb may get more than one PAS frames if the verb sense and its argument set differ, 

underlying the fundamental assumption that syntactic frames are direct reflections of underlying semantics. 

For example, PropBank defines following three distinctive PAS frames for the verb run on account of sense 

variation (Figure 1.52). Each structure contains its own set of arguments labelled with semantic roles. A 

semantic role of an argument represents a semantic relationship between the argument and its related verb. 

Though, not all arguments of a given verb may be present in a given sentence. The example sentence in 

Figure 7 (left panel) illustrates this point i.e. only Arg0 and Arg1 occur in this sentence without the 

occurrence of Arg2, Arg3, and Arg4 though all arguments are defined as core arguments of the PAS. In 

each PAS, arguments are labelled ranging from Arg0 up to Arg5 with a mnemonic label indicating its 

predicate-dependent role. 
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PAS for Verb: RUN

Sense:  operate, proceed

Arguments:

Arg0: operator

Arg1: machine, operation, 
procedure

Arg2: employer

Arg3: coworker

Arg4: instrumental

Example:

Mr. Stromach wants to resume a 
more influential role in running 
the company.

Arg0: Mr. Stromach

REL: running

Arg1: the company

PAS for Verb: RUN
Sense: walk quickly

Arguments:
Arg0: runner
Arg1: course, race, distance
Example:
John ran the Boston Marathon.
Arg0: John
REL: ran

Arg1: the Boston Marathon

PAS for Verb: RUN
Sense: encounter

Arguments:
Arg0: encounterer
Arg1: thing encountered

Example:
John ran into problems with his 
dissertation. Again. And again.
Arg0: John
REL: ran

Arg1: problems with his 
dissertation

PAS for Verb: RUN

Sense:  operate, proceed

Arguments:

Arg0: operator

Arg1: machine, operation, 
procedure

Arg2: employer

Arg3: coworker

Arg4: instrumental

Example:

Mr. Stromach wants to resume a 
more influential role in running 
the company.

Arg0: Mr. Stromach

REL: running

Arg1: the company

PAS for Verb: RUN
Sense: walk quickly

Arguments:
Arg0: runner
Arg1: course, race, distance
Example:
John ran the Boston Marathon.
Arg0: John
REL: ran

Arg1: the Boston Marathon

PAS for Verb: RUN
Sense: encounter

Arguments:
Arg0: encounterer
Arg1: thing encountered

Example:
John ran into problems with his 
dissertation. Again. And again.
Arg0: John
REL: ran

Arg1: problems with his 
dissertation

 

 

 

 

 

 

 

 

 

 

Figure 1.52 – Three distinct PAS definitions for the verb run as defined in PropBank: PropBank 

defines different predicate-argument structures on account of verb sense variation (Kingsbury and Palmer, 

2002; Kingsbury et al., 2002). Thus, three distinctive predicate-argument structures are defined for the verb 

run. PAS for each sense contains its own set of arguments labeled with semantic roles. 

 

Besides these core arguments defined in PAS, some arguments known as adjuncts are traditionally 

not defined in PAS because they are linguistically not required to minimally define the event. PropBank 

does consider adjuncts when annotating sentences, and provides labels such as ArgM plus tags such as 

TMP for temporal information, LOC for locative information, PRP for a reason or motivation, etc. More 

information on the PropBank project could be found in (Kingsbury and Palmer, 2002; Kingsbury et al., 

2002). After manually defining PAS, PropBank has annotated the Wall Street Journal corpus, which 

already contains constituency and dependency information from the TreeBank project (Marcus, 1994).  

 

1.6. - Classification using inductive machine learning 
The goal of learning inductive classification is to infer a classification rule from a sample of labelled 

training examples so that the learner classifies new examples with high accuracy (see Appendix A). A 

proper definition of inductive learning is given in the Methods section. Learning algorithms like 

Perceptron, Winnow and support vector machines determine a linear decision boundary (hyperplane) for 

the binary classification of the data. However, in case of data that are not linearly separable, kernel methods 

can be used to transform them to linearly separable form. In the context of NLP, machine learning 
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algorithms could be used for text/sentence classification or for giving appropriate semantic labels to various 

arguments in PAS. Details of learning algorithms used in this work can be found in appendix B.      

 

1.7 - Generation of Alternative transcripts 
Estimates for the total number of human and mouse protein-coding genes currently fall in the range of 20-

25,000, whereas those of simpler organisms like Drosophila melanogaster (fruit fly) and Caenorhabditis 

elegans (worm) are lower with ~13,000 and 18,000 genes, respectively. Given that the mammalian 

genomes have less than twice as many genes as the fruit fly and the worm, it is generally believed that the 

phenotypic complexity of higher organisms is achieved not only by higher gene numbers, but also by 

multiple mRNA transcript isoforms (Landry et al., 2003).  

Results from Human genome tiling arrays suggests that the number of transcripts encoded by the 

genome is at least 10-fold greater than the number of genes (Bertone et al., 2004; Cheng et al., 2005; 

Kampa et al., 2004). Similarly, the recent analysis of FANTOM consortium data suggest at least one order 

of magnitude more transcripts than estimated 22,000 genes in the mouse genome (Waterston et al., 2002). 

The generation of multiple alternative transcripts is important for the complexity and evolution of 

eukaryotic organisms (Boue et al., 2003). In addition, their spatial and temporal expression patterns are 

believed to be one of the important factors behind the functional specificity of different tissues and organs. 

Moreover, defects in these processes are associated with various diseases (Garcia-Blanco et al., 2004). 

Thus, developing an exhaustive catalogue of alternative transcripts is a crucial task in order to fully 

understand the complexity of eukaryotes (Graveley, 2002). 

High-throughput experiments and computational analyses dominate the mapping of the alternative 

transcript universe. However, the quality and the biological meaning of these assignments should be 

assessed against a highly reliable benchmark set, which can be extracted from single-gene studies published 

in the scientific literature. In addition, computational tools to explore the evolutionary conservation of 

mechanisms that generate transcript diversity are under development, which will also require a trustworthy 

set for rule learning. Synergy in using these mechanisms and preference of usage for various mechanisms 

by different tissues/organ systems is also being explored. Manual curation of experimentally determined 

biological events (physical interactions, AS, disease phenotypes, etc.) to generate trustworthy knowledge 

bases is slow compared to the rapid increase in the body of knowledge represented in the literature. Hence, 

IE approaches developed in this thesis were utilized to extract information about mechanisms for 

generating alternative transcripts in eukaryotes. It is described in the later part of the thesis. Here a brief 

introduction to various mechanisms to generate alternative transcripts is given. 
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Figure 1.71 - Types and consequences of alternative promoters: (a) The use of alternative promoters 

(represented by arrows) does not result in protein isoforms because the variant 5′ initial exons (coloured 

boxes) are joined to a common second exon that contains the translation initiation site, shown as ATG. The 

black boxes illustrate coding exons and 3′ untranslated regions (UTRs) are not shown. Note that splicing, 

represented by solid lines, is only shown between the first and second exons for (a) and (b). (b) Using 

multiple promoters produces mRNAs that encode protein isoforms differing in their N-termini. (c) The use 

of the alternative promoters creates transcripts that code for different proteins as they are translated in 

different reading frames (represented by the black and white boxes). An example of a gene representing 

each type of alternative promoter usage present in both human and mouse is given with the exception of 1c, 

ii where the alternative promoter has only been identified in human. In some cases, not all promoters are 

shown. 
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1.7.1. - Alternative promoters 
Alternative transcripts are generated using different mechanisms presumably working in concert. 

Alternative promoters (Figure 1.71) that are active in different tissues or at different developmental stages 

often regulate the expression of different mRNA isoforms, either directly through different transcription 

start sites or indirectly by promoter-directed exon inclusion in concert with alternative splicing (AS). For 

many genes for which multiple promoters have been documented, no variation in the resulting proteins has 

been reported. In these genes, although the mRNAs have alternative first exons, a common downstream 

exon contain the translation initiation site and therefore have the same open reading frame (Figure 1.71). 

Although no protein isoforms are generated in these instances, the mRNA variants differ in their 

transcriptional patterns and translation efficiencies. A recent analysis increased the estimate for alternative 

promoter usage by protein coding transcription units from 18-20% (Landry et al., 2003) to 58% in mouse 

genome (Carninci et al., PLoS Genet.; Submitted). 
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Figure 1.72 - Different mechanisms of alternative splicing: Every conceivable pattern of alternative 

splicing is found in Nature. Exons can have multiple 5′- or 3′-splice sites that are alternatively used (a, b). 

Cassette exons are fully contained exons that are alternatively used. Single cassette exons can reside 

between two constitutive exons such that the alternative exon is either included or skipped (c). 

Alternatively, multiple cassette exons can reside between two constitutive exons such that the splicing 

machinery must choose between them (d). Finally, introns can be retained in the mRNA and become 

translated (e). The constitutive exons are depicted as open boxes and alternative exons are shaded. The 

lines above and below the boxes show possible alternative splicing events.  

1.7.2. - Alternative splicing 
Various AS mechanisms are known: alternative 5′ or 3′ sites can result in exons of different size, 

exons can be included or skipped, or an entire intron may be retained (Figure 1.72). A total of 60% and 

more than 74% of multi-exon human genes are believed to undergo alternative splicing (Johnson et al., 

2003; Kornblihtt, 2005). AS regulation not only depends on the interaction of splicing factors with their 

target sequences in the pre-mRNA but is coupled to transcription. AS could be differentially regulated and 

generate a repertoire of protein-protein interactions due to difference in protein isoforms.  

 

 

 
 

Figure 1.73: alternative polyadenylation for tissue-specific transcripts: Tissue-specific usage of 

alternative polyadenylation signal is illustrated here. It accompanies selection of a different 3’ exon, 

resulting in different mRNA isoforms.  

 

1.7.3. - Alternative polyadenylation 
Alternative polyadenylation (AP), either alone or coupled with AS of 3′ terminal exons, may also 

generate transcript isoforms that are tissue- or developmental-stage-specific (Figure 1.73). Recent analysis 

based on EST data estimate at least 49% (human), 31% (mouse), and 28% (rat) of polyadenylated 

transcription units to utilize alternative polyadenylation (Yan and Marr, 2005). A portion of these 

alternative polyadenylation events results in new protein isoforms. The estimates of percentage of 

mammalian genes using these mechanisms are increasing with time.   
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II. Objectives 

The major objectives of this work were:  

1. An analysis of full text articles, in order to identify information rich parts of scientific articles and 

analyse distribution of different kinds of information in the different sections of research articles.  

• The full text of an article contains more information than its Abstract. However, in approaching 

full text analysis, problems including those of storage, computational capacity, quality and 

organization of the information carried by different sections, context dependency etc. must be 

tackled.  

2. Development of a database of predicate argument structures (PASBio) for verbs common to biomedical 

texts. 

• A semantic lexicon is an essential module for any general purpose IE system. PASBio will 

function as a knowledge-base for reliable information extraction from free-form biomedical text to 

structured databases.  

3. Application of NLP and machine learning tools like support vector machines for identifying sentences 

describing the generation of alternative transcripts, from MEDLINE abstracts.  

• Corpus based inductive machine learning of patterns is a superior approach to writing rules for 

identifying text at the document, paragraph or sentence level.  

4. Application of various NLP tools to generate a database of alternative transcripts.  

• Generation of alternative transcripts is considered to be a major reason behind the phenotypic 

variation and evolution of eukaryotes. Hence, semi-automatic extraction of this information will 

be useful for communities interested in studying these events either experimentally or 

computationally. 

• It also allows automated gene annotations assisting the work of database curators.   

 

5. Analysis of knowledge from the database of alternative transcripts and its comparison with EST data. 

• Here, the hypothesis that the data extracted from text can be used not only for assisting other 

methods, but also as a stand-alone source for testing new hypothesis and deriving conclusions, is 

explored.  
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III. Methods 

 

3.1. - Analysis of full-text articles for comparison of information in 

different sections 
3.1.1. - Text Corpus for the analysis of full-text articles 
The aim of the analysis was to compare the information carried by different sections of a paper, 

especially the differences between the Abstract and the rest. Therefore, a set of full-text articles, with a 

regular section structure, namely having a defined Abstract, Introduction, Methods, Results, and Discussion 

(A, I, M, R, D) sections was used for the study. Another requirement was a certain homogeneity of style 

across the articles (for example, a similar length of the Methods section) and, since there is a great interest 

in the field of data mining on the detection of gene names, the subject should be related to Genetics. Thus, 

104 articles published in Nature Genetics from June 1998 (volume 19, issue 2) to June 2001 (volume 28, 

issue 2), which comply with the AIMRD structure were chosen. Note that other journals, or even the 

Letters of the very same Nature Genetics, might have a different structure (for example, lacking separated 

I, M, R, D sections). 

 

3.1.2. - Derivation of associations between the words of a section 
Given a section from an article, the text was split into sentences using TreeTagger (Schmid, 1994), 

a standard part of speech tagger. The associations were computed between the words that are tagged as 

nouns as their part of speech category. Following (Perez-Iratxeta et al., 2002), the association between two 

words ( ) can be modelled as the degree of inclusion of one word into the other ( )which can 

defined as the fuzzy binary relation given by:
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=µ , that is, the ratio of the number 

of sentences where both words and  co-occur to the number of sentences the word  occurs. iw jw iw

 

3.1.3. - Selection of Keywords 
The work was aimed to compare the information carried by different sections of a paper, 

especially the differences between the Abstract and the rest. The work focused on the extraction of relevant 

words (keywords) regarding objects, detected as nouns from natural text by Tree-tagger (Schmid, 1994). It 

has been previously observed that words associated strongly to many other words are relevant to the matter 

that is dealt in the article (Perez-Iratxeta et al., 2001). Thus, in order to derive keywords from the section of 

an article, associations between the words in a particular section were computed. Here, sentences were 

taken as the unit of text to look for associations, that is, two words are associated in the context of a section 
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if they co-occur repeatedly in sentences within that section. A scoring scheme was devised that gave a 

score (K) that is higher for words with many and strong relations to other words. This measure was used to 

select words as keywords, in this case, related to objects such as proteins, genes, organisms, etc. 

A word is considered as relevant if it establishes many and strong relations to other words for the text 

analyzed (Perez-Iratxeta et al., 2002). Therefore, in a given section, a score for a word wi is defined that is 

equal to , normalized to the maximum value found for K of any word in that 

section. Then, the keywords of the section are defined as those words that have a K score above a certain 

value. 
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3.1.4. - Classification of Words in Subjects 
In order to classify words into categories, MeSH classification from the National Library of 

Medicine (NLM) was used as a guideline. All single word MeSH headers (or their synonyms as defined by 

the NLM annotators) were selected and then the stem of the word was computed using Tree-Tagger. The 

words present in the corpus of 104 articles were ordered by frequency and all words occurring more than 

200 times were selected. Those matching the selected single-word MeSH headers from six categories (A, 

B, C, D, E, and G; Anatomy, Organisms, Diseases, Chemicals and Drugs, Techniques and Equipment, and 

Biological sciences respectively) were selected as belonging to those classes. In order to avoid possible 

misannotations, words matching more than one category were discarded. Manual analysis of the resulting 

table of associations was carried out in order to check the associations and to make new ones. A new class 

not present in MeSH (the X class of "Units, Dimensions, & Parts") was generated in order to include a 

large number of terms mainly present in the Methods section. 

 

3.2. - Definitions of precision, recall and F-measure 
The precision and the recall of can be defined as follows.  

Recall = TP/(TP+FN) and Precision = TP/(TP+FP) 

Where, TP, TN, FP and FN are true positives, true negatives, false positives and false negatives.  

F-measure = 
cec

cec
RePr

RePr)1(
2

2

+×
××+

β
β ,  

The parameter β can be used for weighing precision and recall terms, but we give equal weight to precision 

and recall and hence take β=1. Thus, the F-measure is the harmonic mean of precision and recall. 
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3.3. - Predicate argument structure analysis for written texts in 

molecular biology 
3.3.1. - Selection of Verbs for PAS analysis 
The research in molecular biology is multi-faceted and new concepts are added in the literature 

continuously. However, the areas of cellular signalling, gene expression, regulation and disruption of gene 

expression, are very important for the larger community of investigators involved in basic biomedical 

research and those performing high-throughput experiments. These events are discussed throughout the 

different parts of papers as possible cause of development and disease states of different organisms. While 

most of the vocabulary found in research articles is similar to that of general English, some verbs are 

domain-specific in nature. Verbs that are used for describing molecular events in biology were the focus of 

the analysis. Hence, verbs involved in the above-mentioned processes (events) and present in the literature 

with high-frequency were chosen.  

 

3.3.2. - Selection of Example Sentences for PAS analysis 
Majority of the published IE systems use MEDLINE abstracts as a source for text. The use of 

abstracts is advantageous because they have highest density of keywords compare to other section of 

research articles. On the other hand, mining of biomedical texts should scale-up to analyze full-text articles 

where the most detailed descriptions are contained along with supporting evidences, comparisons to 

published work in the same area of research and background information, etc. (Mizuta and Collier, 2004) 

Introduction and Discussion sections apart from the abstracts of articles may be viewed as interesting 

source of important biological information (Shah et al., 2003). Thus, PAS was defined by analyzing 

sentences from MEDLINE and from all article sections except the Method section from papers in journals 

like Proceeding of National Academy of Science , Nucleic Acid Research,  EMBO journal  and Journal of 

Virology. Analysis of sentences from various sources would help achieve usage agreement and good PAS 

frames. Sentences from the Method section are not used in this analysis as they are limited in terms of 

biomedical information, have generic written styles and verb sense usage tend to overlap with general 

language. 

 

3.3.3. - Use of parsers reduces manual work  
At least 10 sentences per predicate were selected to determine the PAS frame of the verb under 

study. A sentence under investigation was parsed using Connexor Parser (Tapanainen and Jarvinen, 1997) 

that uses Functional dependency grammar (FDG), to give parse tree, word, lemma, syntactic function and 

dependency links between words. Such information helped in determining the existence and boundary of 

each argument present in a sentence. The parse tree served as a useful guide helping in the manual analysis, 

but was not considered a gold standard (Figure 3.31). However, usage of the parser considerably reduced 

the manual work involved in defining arguments. 
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Sentence
One exon is spliced out of the MLC3nm transcript in smooth muscle to give an alternative product.

root

spliced

is out of

exon

One

transcript

the MLC3nm

in

muscle
smooth

give

to product

an alternative

main:

v-ch: sou:

subj: pcomp:

qn: det:

pcomp:

mod:

attr:

mod:

pm: obj:

det: attr:

1  One  one  qn:>2  @QN> %>N NUM CARD
2  exon  exon  subj:>3  @SUBJ %NH N NOM SG
3  is  be  v-ch:>4  @+FAUXV %AUX V PRES SG3
4  spliced  splice  main:>0  @-FMAINV %VP EN
5  out of  out of  sou:>4  @ADVL %EH PREP
6  the  the  det:>8  @DN> %>N DET
7  MLC3nm  mlc3nm  attr:>8  @A> %>N N NOM SG
8  transcript  transcript  pcomp:>5  @<P %NH N NOM SG
9  in  in  mod:>8  @<NOM %N< PREP
10  smooth  smooth  attr:>11  @A> %>N A ABS
11  muscle  muscle  pcomp:>9  @<P %NH N NOM SG
12  to  to  pm:>13  @INFMARK> %AUX INFMARK>
13  give  give  mod:>11  @-FMAINV %VA V INF
14  an  an  det:>16  @DN> %>N DET SG
15  alternative  alternative  attr:>16  @A> %>N A ABS
16  product  product  obj:>13  @OBJ %NH N NOM SG
17  .  .

Lexical informationParse-Tree

 
 

Figure 3.31 - The parse tree generated by the FDG parser: The parse tree generated using an 

FDG parser provides information at different level. It provides words, lemma, part of speech tags 

(noun, verbs etc.), syntactic information and relations (subject, object etc.) and also word 

dependency information.   

 

3.4. - Semi-automated generation of the database of transcript diversity 
3.4.1. - Description of transcript diversity in abstracts 
In the eukaryotes multiple transcripts are generated and expressed from a single gene by 

mechanisms including alternative splicing (Graveley, 2001; Graveley, 2002), alternative polyadenylation 

(Edwalds-Gilbert et al., 1997), and differential promoter usage (Landry et al., 2003). Sentences describing 

generation of TD may contain descriptions of transcript diversity generating mechanisms, experimental 

methods, species, physiological conditions, isoform specificity etc (Figure 3.41; categories 1-3).   

 

 

 
Category 1 

 

1. The [NAALADase/PSMA1]1 gene is known to produce multiple [mRNA splice forms]2 ([PSMA1a and PSMA1b]1).  
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2. It had been assumed that the [human]3 [brain and prostate]4 express transcript variants of [p73]1 generated by [differential 

promoter usage]2. 

3. One of these genes encodes [two]6 different enzyme forms, alpha and beta, due to [the differential usage of first exons]2. 

4. The newly defined region of [Hu-K4]1 contains [an intron that may be alternatively spliced and seven polyadenylation 

signal sequences]2. 

5. [EDNRDelta3]1 generates the same amino acid sequence at the C terminus, but utilizes [the polyadenylation signal within 

the open reading frame]2, resulting [in a shorter 3’ UTR]5. 

6. The larger clone has 5’ and 3’ ends that are identical to the smaller clone but also has [an alternatively spliced 1.9-kilobase 

internal segment]2.  

Category 2 

7. A [HPFK-M]1 cDNA clone lacking [the sequences corresponding to exon IX]5 was isolated from [human]3 [fibroblast]4 

(IMR-90) library, suggesting that [HPFK-M]1 transcript may be [alternatively spliced]2. 

8. Soluble [Fc gamma receptors]1 are produced by [cleavage of the membrane receptors or by alternative splicing]2. 

9. [Northern hybridization analysis and RT-PCR]7 suggests that the soluble and membrane bound forms of [human]3 [AmP]1 

are products of [two distinct genes or, through alternative splicing]3, have different [C-terminal sequences]5. 

Category 3 

10. In this study, we have identified [three]6 [Skn-1]1 isoforms, which encode [peptides with various N termini]5. 

11.  These [two]6 [hRPB3]1 mRNA species differed in [3’ UTR region length]5, the longer transcript containing the AU-rich 

sequence motif that mediates mRNA degradation. 

12.  If this question is correct, the observed differences in [amino acid sequences]5 of [protein phosphates 2]1 could be 

explained by the existence of different mRNAs for gamma and gamma’ chains. 

13.  [Northern blot analysis]7 detected 2.4 kb and 3.2 kb mRNA transcripts of [Ccd1]1 in all tissues examined.  

14.  [Gene expression analysis using cph genomic fragments from normal and neoplastic cells]7 identifies a number of 

transcripts including a major mRNA of 2.5 kb as well as several smaller transcripts. 

15.  There were [tissue-specific]8 differences in the size of [MAP4]1 mRNA transcripts in [human]3 [brain]4 tissues as well. 

16.  All [six]6 mRNAs of [Pot-1]1 like gene were present in the samples analyzed. 

Category 4 

 

17.  A G to T mutation in exon 6 results in an in-frame termination codon in eight Hispanic patients from Colorado and New 

Mexico. 

18.  Northern analysis and RT-PCR detected aberrant splicing and mutations of TEG101 in human breast cancer cell lines. 

19.  We report on molecular cloning of a novel human cDNA by its interaction with the splice factor SRp30c in a yeast two-

hybrid screen. 

20.  All exon-intron boundaries agree with GT-AG rule. 

21.  Using RT-PCR analysis, we show that human 20alpha-HSD, and PGFS mRNAs express ubiquitously, while DD4 mRNA 

is restricted to the liver. 

22.  Regions of strong divergence between chicken fast C-protein and human slow C-protein may represent differences in C-

protein isoforms.  

23.  Identification of I-plastin, a human fimbrin isoform that is expressed in intestine and kidney. 

 

Figure 3.41 - Example sentences from MEDLINE describing transcript diversity: Example sentences 

from the training set, describing generation of transcript diversity (categories 1-3) and negative sentences 

(category 4). Alternative transcripts are generated by many mechanisms or combinations of them. Hence, 

the SVM classifier has to learn multiple patterns apart from their syntactic variants. The sentences are 
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classified in to various categories and semantic patterns are hand-labeled from 1-8. Please see table 4.31 for 

the pattern labels.   

 

Aberrant transcripts are generated and expressed in disease conditions. Their description may be 

found in literature describing clinical studies, involving cell lines and tissue samples from patients. Also, 

the sentences describing expression of a single gene or its products or mechanism of splicing are common 

in literature. The sentences describing negative conclusions about AS, protein isoforms that may be 

generated by different gene paralogs, and expression of aberrant transcripts, were taken as negative training 

examples (Figure 3.41; category 4). These sentences show similar word usage to sentence in catergoris 1-3, 

making the learning task more challenging.  

 

3.4.2. - Definition of Sentence classification task for inductive learning 
The sentence classification task was carried out using inductive machine learning on a training set 

with labelled examples. During inductive learning the learner Ł is given a training set S containing n 

examples ( 11, yxr ), .. , ( ), nn yx ,r }1,1{ +−∈y , drawn independently and identically distributed according 

to an unknown but fixed distribution. Each example consists of a text feature vector  and its class label y. 

The learning task involved the maximization of correct class labels. In such a set up, the classification 

performance of any method depends upon the quality of features presented to the method and the various 

learning parameters. Thus, the procedure of feature extraction and parameter estimation is very important 

for machine learning. The learning performance of a trained classifier is assessed on a set of examples it 

hasn’t seen before. The learning process is repeated until the classifier achieves a satisfactory performance. 

xr

 

3.4.3. - Training corpus and pre-processing for sentence classification  
Generation of transcript isoforms diversity is a part of gene expression process. Hence, abstracts with 

MeSH terms describing gene expression where retrieved and sentences describing TD were chosen for 

creating the training corpus. A total of 4240 sentences describing generation of multiple alternative 

transcripts in natural states and 13,520 negative sentences were taken from article titles and abstracts. 

Aberrant transcripts are generated due to phenomenon including mutations, and nucleotide inversions that 

lead to diseases. Such sentences are considered negative sentences for the task as the focus was to extract 

natural transcript diversity. 

The Oak system (http://nlp.cs.nyu.edu/oak/; Sekine S., unpublished) was used to split abstract text 

into sentences. Sentences were tagged with Tree-tagger to assign part of speech tags to the words (Schmid, 

1994). Sentences were broken down into words and stemmed to act as primary features to learn from. Stop 

words, words with certain part of speech tags, and words occurring with very low frequencies (< 5) were 

removed from the list of words composing the input feature set. The resultant of pre-processing is a file 

contained all the words (bag of words) occurring in the corpus with a total of 23,742 features. A 
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‘vocabulary’ file was generated by manually inspection and removal of non-essential words from the first 

file to result in 9590 features for this set.  
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Figure 3.42 - Flowchart of the sentence classification procedure: The procedure has two main modules 

and other accessory modules. The module marked with a, is a pre-processing module. This module is used 

to convert text into feature vectors that can be used for inductive learning or for classification once the 

classifier is trained. The module marked with b, is the learning module. Inductive learning accompanied 

iterative generation of training set and parameter optimization in order to get a good performance.  

 

Classification experiments with naïve Bayes, EM, Maximum Entropy, KNN and tf*idf and its 

variants were performed with the Bow toolkit (http://www-2.cs.cmu.edu/~mccallum/bow/). SVM 

implementations from the package SVMlight was used (http://svmlight.joachims.org). Please see (Joachims, 

2001; Mitchell, 1997) and (Ribeiro-Neto, 1999) for a detailed discussion of the methods used here.  Also, 

see Appendix for a short introduction to SVM and of other machine learning algorithms. The training 

procedure is summarized in Figure 3.42. 
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3.4.4. - Set for benchmarking of recall for SVM classifier 
The classifier performance of the classifier trained to extract only natural transcript diversity was 

benchmarked against the MeSH annotations in MEDLINE. MEDLINE 2004 contained 8133 abstracts with 

the MeSH term ‘alternative splicing’ assigned to them. But only a subset of abstracts provided information 

about physiologically relevant (natural) transcript diversity. For example, 1725 of these abstracts also 

contained the MeSH term ‘mutation’, usually referring to cases of aberrant transcripts and 489 abstracts 

were without any text. Hence in order to maintain consistency, we removed 2214 abstracts from the list and 

used remaining abstracts while benchmarking for the recall.   

 

3.4.5. - Mapping of sentence classification results to Sequence databases 
The sentences extracted by the SVM classifier were mapped to gene entries in databases like 

SwissProt, RefSeq, and GenBank using literature entries in those databases. This mapping was done 

carefully to avoid one sentence/abstract mapping to multiple genes, a situation that may arise in case when 

literature in a single abstract is attributed to multiple gene entries in the database. The mapping procedure 

allows entries in LSAT to be linked with sequence databases and thus an access to knowledge stored in 

those databases.      

The success in assigning gene, species, and event mechanisms is as follows (Figure 3.43).  46% of 

all abstracts were directly mapped to literature entries in the sequence databases like Swissprot 

(Boeckmann et al., 2003), RefSeq (Pruitt and Maglott, 2001) and GenBank (Benson et al., 2004). A further 

15% of all abstracts were assigned the database identifiers using a gene tagger (Mika and Rost, 2004) and 

the species name extracted from the sentences and/or from the MeSH terms. This mapping was carried out 

with a synonymous list. However, only 54% of all abstracts could unambiguously be assigned to unique 

specie (category a in the bottom; Figure 3.43). Rest of the abstracts may have gene and species information 

but they could not be assigned to a sequence database. Using this mapping procedure 674, 637, and 359 

annotations were added for AS for human, mouse and rat genomes, respectively. 

 

3.4.6. - Quantifying the gain in gene annotation 
To quantify the gain in gene annotation, first, the sequence information was mapped to the 

Medline identifiers from the SVM classification using literature entries in Swissprot, Refseq and GenBank. 

Second, sequence containing entries for human, mouse, and rat genes present in our results and in those 

databases were mapped to Ensembl (Birney et al., 2004) gene identifiers using the EnsMart system. Then 

these annotations were compared to that of Swissprot and RefSeq to identify genes that missed the manual 

curation of AS. Misannotations that arise due to single literature entry mapping to multiple database entries 

were rejected. Hence, these annotations are highly significant.  
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Figure 3.43 - Distribution of results: The pie chart in the middle shows the number of abstracts that could 

be mapped to sequence databases using literature entries and synonymous list and those that couldn’t 

(clockwise). The bar graphs with categories 1-4 shows number of abstracts in which mechanism could be 

assigned to genes extracted from those abstracts. MeSH terms and species information was used to identify 

gene studied in the abstract (bar graph with categories a, and b). Using literature entries present in 

Swissprot, RefSeq and GenBank databases extraction results were mapped to to Ensembl genes for human, 

mouse and rat genomes. Annotation increase obtained is shown in the bar graph.  

 

3.4.7. - Merging multiple syntactic patterns to define semantic categories 
For example, in the sentence, ‘Northern blot analysis detected the presence of a 2.4kb transcript 

and a 3.2 kb transcript in brain, liver and pancreas’, the phrases ‘Northern blot analysis’ and ‘brain, liver 

and pancreas’ would serve the role of arguments to the verb detect with semantic labels of experimental 

methods and tissues, respectively.  It is clear that variation of the sentence as ‘Detection of 2.4 kb and 3.2 

kb transcripts present in brain, liver and pancreas by northern blot analysis’ would not change the semantic 

role assigned to constituent ‘northern analysis’ and ‘brain, liver and pancreas’. At the same time in 

sentence, ‘Using RT-PCR and nucleotide sequencing, alternative splicing was confirmed in liver, brain and 

testis’, phrases ‘RT-PCR and nucleotide sequencing’ and ‘liver, brain and testis’ would serve roles of 

experimental methods and tissues, respectively. 
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3.4.8. - Rules for extracting semantic categories 
For example, a rule to find out the role of the variable region in alternatively spliced transcripts in 

terms of structure or function could be summarized as follows: “Take Noun phrase chunks right to different 

forms of verbs ‘lack’ (Figure 3.41; sentence 4) and ‘differ’. Terminate when any of the end condition is 

encountered”. The end condition includes encounter of end of line, break in the sentence, different forms of 

‘be’, words like ‘through’, ‘due to’ and ‘because’. The rule for extracting experimental methods can be 

described as follows: “Take chunks left to the different verbs ‘show’ and ‘detect’ (Figure 3.41; sentence 4, 

6, 8, and 9) containing certain keys words (e.g., PCR or blot). Take the chunks to the right if passive form 

of verbs is used”.   

Apart from the phrases extracted using predicate argument structure analysis, event mechanisms 

were extracted based on bi-gram and tri-gram phrase lists. Tissue specificity was identified by tagging the 

word ‘specific*’ that may follow the tagged tissue name or part of the word describing the tissue (e.g. 

brain-specific). Similarly, ‘number of isoforms’ was extracted by the fact that such numbers always 

preceded the tagged event mechanisms. Tissues were tagged using a dictionary compiled from Swissprot 

and Refseq. Gene names were tagged using an entity tagger (Mika and Rost, 2004).       

 

3.4.9. - Benchmarking of the tagging performance 
From the sentences retrieved by the SVM classifier, instances of eight semantic categories were 

extracted with rules (see above). Performance (precision and recall) of this tagging rules were evaluated by 

manually inspecting 300 randomly selected sentences for each category (see Table 5). 

 

3.4.10. - Associating TD-generating mechanisms with organ systems. 
The significance of the association of each TD-generating mechanism with each organ system was 

evaluated using the Hypergeometric distribution. The p-values were corrected for multiple testing by 

calculating the false discovery rate using the Benjamini-Hochberg formula (Reiner et al., 2003). Total 14 

significant associations (out of 45) were found at a 5% false discovery rate, three of which were also 

significant at a 1% false discovery rate. 
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IV. Results 
 

4.1. - Analysis of full text articles with keywords 
Most applications of information extraction from the biomedical texts use the Abstract of the publication. 

Abstracts are good for this purpose because they synthesize the content of the article and they are available 

in public databases. However, nowadays most journals are available in electronic version, and thus full text 

articles can be used for information extraction.  

It is obvious that the full text of an article contains more information than its Abstract. However, 

in approaching full text analysis several problems must be tackled. The storage of full text articles requires 

more disk space and the analysis needs more computational capacity. An Abstract, as a summary, contains 

a high frequency of relevant terms and relationships, but this may not be the case of the rest of the article. 

Other questions regard the quality of the information carried by different sections of an article. First of all, 

is the information in full text organized enough so that it can be extracted? Secondly, different kind of 

information (for example, gene and protein names, tissue names, organisms, experimental conditions, etc.) 

may be located in different parts of the article. Or it could be that a word has a different meaning depending 

on the section where it is located (the word has a context dependent meaning). For example, regarding gene 

names, those found in the Methods section may refer mostly to analytical tools rather than being relevant to 

the biological phenomenology described in the whole article. In summary, it would be good to quantify and 

qualify the information in a full text article before embarking in large scale extraction of particular items of 

information. 

The work was aimed to compare the information carried by different sections of a paper. To 

simplify matters, the work focused on the extraction of relevant words (keywords) regarding objects as they 

represent a logical view of a given document. A scoring scheme was devised to identify keywords and it is 

described in Methods. 

 

4.1.1. - Performance at keyword detection 
The performance of the keyword detection was evaluated by comparing selected keywords to the 

MeSH (Medical Subject Headings) terms attached to the articles by annotators at the National Library of 

Medicine. There are 18.6 MeSH terms per article on average. MeSH terms composed of only a single word 

(6.80 terms on average) were selected for comparison, as keywords are at the level of single words. It was 

noted that the most unspecific (for example, animal) were often not present in the text and thus could not 

be matched by a keyword as opposed to species names (mouse, mycobacterium, human), or anatomical 

terms (hippocampus, cerebellum, breast). Of those single-word MeSH terms, 4.91 were found on average 

in the article (as nouns), and 2.22 were among the set of selected keywords (above K>=0.3). Obviously, a 

more accurate comparison to MeSH terms would require the detection of word phrases (bigrams, and 
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trigrams), but this is out the scope of this work. The recall when matching the original MeSH terms went 

down from 6.80 / 470.6 = 0.72 in the dictionary of 470.6 different nouns present in an article to 6.80 / 66.6 

= 0.33 in the 66.6 keywords selected. However, since the size of the list of all nouns found in an article is 

much larger than the number of keywords, the precision in matching the MeSH terms of an article 

increased from 4.91 / 470.6 = 0.010 to 2.22 / 66.6 = 0.033. 

 

4.1.2. - Keyword selection by section 
The number of words selected upon a threshold in the K value varies for different sections (Figure 

4.11). The first observation was that there were a small number of words that have much better K scores 

than the rest. This means that the organization of words makes it possible to extract keywords for all five 

sections considered. 
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Figure 4.11 - Distribution of keywords by article sections: Average number of keywords versus the 

threshold K for A, I, M, R, and D sections. The average number of nouns per section is, A = 52, I = 171, M 

= 404, R = 600, D = 331 

The number of words selected was very similar for all sections for very high values of K (above 

0.8). Above a threshold on K (K >= 0.5; see Table 4.11) the resulting number of keywords were quite 

similar for Introduction and Methods (around 15 for each) with the other three sections producing around 

nine keywords. However, if one accounts for the size of the sections it is obvious that the frequency of 

keywords (selected with K>=0.5) per noun was the best in the Abstract (0.18), followed by the Introduction 

0.08), with Methods, Results, and Discussion lagging behind. This justifies data mining strategies that 
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focus in the analysis of Abstracts in order to minimize computational work. However, this result already 

indicates that not all keywords are in the Abstract, and that therefore mining the rest of the article may be 

useful. 

 

 All K>=0.3 K>=0.4 K>=0.5 

A 52.17 19.44 14.42 9.77 

I 171.32 31.03 20.47 14.00 

M 404.19 54.24 28.50 15.80 

R 599.98 24.74 12.74 7.85 

D 331.04 26.16 14.25 8.75 

Table 4.11- Keyword selection per section: Average number of nouns per section (all), or number of 

those selected as keywords for three different thresholds on the K score 

 

4.1.3. - Sections display heterogeneous information 
As a way to see how heterogeneous the information is between different sections, the keywords 

that were common between sections were examined. The results indicated that, typically, not many 

keywords were common between sections and those present were not very relevant. Even for a low 

threshold of K>=0.3, there is on average only one such general keywords per article. Those are often non-

informative words such as "gene", or "protein". This indicates that the information is unevenly distributed 

across the sections of the article, that is, different sections contain different kind of information. 

The heterogeneity of the information by section with the keywords selected (for K>=0.5) for a 

particular article is illustrated here (Figure 4.12). This work deals with an exon loss resultant of a mutation 

in the Nf1 gene of mouse that produces learning deficits (Costa et al., 2001). The only keyword present in 

every section is the organism under study, the mouse. If the Methods section is excluded, only one single 

more keyword (mutation) is selected. Other three-section overlaps give more interesting keywords such as 

the name of the gene under study (Nf1, neurofibromin), a domain contained in the resulting protein (GAP), 

the method for testing the learning performance of mice (maze), or the resulting phenotype (impairment, 

lethality). Keywords unique to different sections tend to correspond to the different information contained 

in each section. For example, the keywords unique to the Methods section deal with reagents and 

techniques (antibody, amersham, tris, primer).  
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Figure 4.12 - Example of keywords selected for one article: The keywords selected for an article (Costa 

et al., 2001) with a K>= 0.5 are represented as they appear in the different sections of the article 

 

In order to quantify the differences and similarities of content across the article the number of 

keywords that are shared between different sections were compared (Table 4.12). The values indicate that 

the Methods section is the most different of all. In Methods, the content is usually focused on the 

techniques and protocols used, and not so much on the biological phenomena that is the main subject of the 

article. This alone explains why those keywords present in every section (for example protein, gene) are 

scarce and uninteresting.  

Regarding similarities between sections, A, I, and D are evenly similar among them, and R is the 

closest to M, as shown when plotting the distance matrix of Table 4.12 as a dendogram (Figure 4.13). The 

Results section is expected to be closest with the Methods as there the protocols used become prevalent just 

like the Methods. The Discussion focuses again on the biological results (stressing their relation to the 

current knowledge) without detailing the techniques that have already been explained in Methods and 

justified in Results. This result indicates that each section contains certain keywords that are unique to the 

section. In the following pages differences in content between sections are characterized. 
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 A I M R D 

A  2.01 0.92 1.77 2.20 

I 2.01  0.81 1.34 2.02 

M 0.92 0.81  1.55 1.02 

R 1.77 1.34 1.55  1.99 

D 2.20 2.02 1.02 1.99  
 
Table 4.12 - Average number of keywords (K>=0.5) shared by two sections.  

 

Figure 4.13 - Comparison between article sections: Similarity and differences between standard sections 

of full-text articles regarding the keyword contents. 

 

4.1.4. - Qualitative analysis of subjects per section 
A set of words present in the corpus of 104 articles (not necessarily selected as keywords) were 

classified in seven categories to analyze further the kind of information present in each of the sections. In 

order to do so as unambiguously as possible, the words (nouns) that matched MeSH descriptors consisting 

of a single word and belonging to only one major MeSH category, were used (see METHODS). An 
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additional category not present in MeSH, that of “Units, Dimensions, & Parts” was defined in order to 

account for many terms that are currently not MeSH terms but are of interest. 
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Figure 4.14 - Word categories present in the five sections under analysis: Classes according to MeSH 

are A (Anatomy), B (Organisms), C (Diseases), D (Chemicals & Drugs), E (Techniques & Equipment), G 

(Biological Sciences). An additional class X was defined in this work (Units, Dimensions, & Parts). The 

number of words used for the analysis was 36 (class A), 14 (B), 11 (C), 47 (D), 33 (E), 41 (G), 49 (X). (a) 

Average number of occurrence of words of each subset per section. (b) Frequency of words of each subset 

per total number of words for each section. 
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The results (Figure 4.14a) indicate that the large sections are a good source of keywords, 

expectedly the Methods with many terms related to techniques. Introduction, Results and Discussion 

contain a good deal of information regarding diseases. However, again, the Abstract section is shown as the 

best source for most subjects regarding frequency of keywords (Figure 4.14b) except for those typical of 

the Methods section (Techniques & Equipment; Chemicals & Drugs). 

 

4.1.5. – Analysis of distribution of gene names 
Detection of gene and protein names (NE extraction) is a very important subject, broadly used for 

the detection of macromolecular interactions (see Introduction), and one objective of this work concerned 

with the relevance of matching gene names in different sections of an article to study the context 

information, the distribution of gene names across sections was examined. 
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Figure 4.15 - Distribution of gene names across sections: (a) Average number of different gene names 

per section from the set of 224 genes. (b) Frequency of different gene names per total of nouns for each 

section 

As mentioned in Introduction, gene name identification is not an easy task and frequently these 

names tend to be ambiguous. For example, there are gene names called Not or That. Shorter names (e.g. 

A6) can also be a problem. In order to avoid the ambiguity in the analysis, a set of 539 genes whose names 

composed of three letters followed by one single digit was selected from the Swiss-Prot database (Bairoch 

and Apweiler, 2000). A total of 224 gene names out of the 539 were matched in 76 of the 104 articles. The 

Results section was the one with more gene names (Figure 4.15a). Again, the Abstract, and then the 

Introduction, were the sections with the highest frequency of these names (Figure 4.15b). 

The context of gene names that were exclusively mentioned in the Methods section was checked 

manually in order to study the problems that affect gene-name identification if context is ignored (even 
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when using gene names apparently easy to recognize). Of the 224 genes, just 24 were mentioned in the 

Methods section of the corresponding 14 articles and not elsewhere. 

In five of the 14 articles, the name was referring to a non-gene object (three restriction 

endonucleases, a vector name, and a fibroblast cell strain). In four articles, the gene was mentioned in a 

technical context (usually, the gene mRNA level was used for analysis of cell state) and no biological 

process involving the gene was described. In only four articles the mention of the gene name was relevant. 

Additionally, it was noted that of these 24 gene names, at least two (Pbp2, Pom1) could refer to two non-

homologous (unrelated) genes, and another one (Sac1) to four; such synonymous gene names make gene 

identification difficult. In summary, one should be careful with the context in which gene names appear. 

Extreme caution should be applied with gene names appearing uniquely in the Methods section. 

 

4.2. – PASBio:  Towards event extraction from biomedical texts 
 

The complexity in IE increases as one moves from NE extraction to relationships and event extraction. 

There are already several reports in the literature for describing methods for NE identification from 

biomedical texts. It has been a shared task for at least two community-wide efforts (see Introduction). 

There have been ongoing efforts for relationships extraction since the beginning of NLP in biology. Event 

extraction, which is considered the highest level IE, is the task on which this part of the thesis concentrates.  

Event extraction involves the filling of an event template that makes use of the results from entity 

recognition. As mentioned in the introduction, traditional IE methods utilizing rules based only on syntax 

suffer from performance degradation due to the fact that a single event can be written in a variety of 

syntactic forms. Moreover, relationship extraction from complex sentences in technical and scientific texts 

requires deeper knowledge of sentence semantics. Regular expression based methods that use shallow 

parsing based argument chunking capture only weak notions of argument structures. On the other hand, 

PAS frames formalize the notion of arguments centered on a predicate. Thus, semantic extraction templates 

based on PAS would perform better at the task of event extraction. Utilization of PAS frames is the ideal 

solution to the problem of performance degradation facing the IE methods caused by the existence of 

multiple syntactic patterns (see Introduction). Therefore, sentences from biomedical corpus were analyzed 

for semantic roles and argument sets of interesting predicates in biomedical text and the resultant PAS 

frames were compared to those proposed for English from the newswire text representing the usage in 

general domain.   

The resultant PAS frames are available in the form of a database of predicate argument structures 

in biology (PASBio) at http://research.nii.ac.jp/~collier/projects/PASBio (Wattarujeekrit et al., 2004).  
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4.2.1. - Mapping from surface structures to PAS 
Mapping from the surface structures to PAS could be illustrated with the example mentioned 

earlier, (a) “Peter sprayed water on his flowers.” and (b) “Peter sprayed his flowers with water.” Both 

sentences can be mapped into the PAS of the verb spray, which indicates the event of “applying thin liquid 

to surface” with 3 required arguments (agent, liquid, and surface). In both the sentences the constituent 

“Peter” plays the semantic role of an agent who does the action, “water” that of the liquid used in the 

event, and “his flowers” is conceived as the surface getting wet. It should be noted that the position of 

“water” in sentence (a) is that of a direct object following a verb which belongs to a part of a prepositional 

phrase as in sentence (b). Similarly, a sentence from biological corpus such as “One exon is spliced out of 

the MLC3nm transcript in smooth muscle to give an alternative product.” could be conceptualised into 

PAS relationship as follows (Figure 4.21).  

A syntactic parser would assign the sentence constituents “One exon”, “is spliced out”, “of the 

MLC3nm transcript”, “in smooth muscle”, and “to give alternative product” with their syntactic categories 

as noun phrase, verb, prepositional phrase, prepositional phrase, and verb phrase respectively. At the 

syntactic relations level, “One exon” is the surface subject of the passive form verb “is spliced out” and 

other constituents play the role of complements (Figure 4.21). 
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Figure 4.21 - Syntactic and semantic level description of the surface text: There are different levels of 

understanding the surface text. Syntactic categories provide a syntactical class for each constituent of the 

sentence. Syntactic relations describe the syntactical function of each constituent of the sentence to the 

predicate of the sentence. Argument categories offer the semantic concept for each constituent of the 

sentence. Predicate-argument relations level helps in understanding the semantic role played by each 

constituent or argument related to its predicate 
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Above the syntactic levels, there are semantic levels including the argument categories and 

predicate-argument relations. At the argument categories level “One exon”, “the MLC3nm transcript”, 

“smooth muscle” and “alternative product” constituents belong to the domain concept classes of a gene 

product (mRNA), tissue and alternative mRNA respectively. The predicate-argument relation level contains 

the most abstract information. Semantic roles played by other constituents to the verb indicating the event 

are represented at this level. Thus, the process of removal of an exon from mRNA is indicated by the verb 

splice out. Here, the verb arguments play the semantic roles of lost component (“One exon”), entity getting 

spliced (“the MLC3nm transcript”), location referring to tissue (“smooth muscle”), and secondary 

predication - showing purpose or reason in this example (“to give an alternative product”) and suggest 

alternative splicing of MLC3nm mRNA. The argument “to give an alternative product” is assigned the 

semantic role secondary predication because this argument by itself is capable of instantiating a PAS frame 

and therefore it is considered to be a core argument.  

The semantics of a sentence relate in complex ways to the syntax of the sentence as illustrated by 

various semantic and syntactic levels (Figure 4.21). Using this layered approach different surface forms 

describing a given event can be mapped into the same PAS. Thus, PAS could be helpful for IE to overcome 

the syntactic variation problem in molecular biology. 

 

4.2.2. - Defining predicate-argument structures for molecular biology 
In molecular biology, genes and their products are at the centre of the study, as a set of these 

molecular entities dictate, and their products carry out, different functions at the cellular level and the 

combined effects can be seen at the organism level. Hence, in the sentences in biomedical literature genes 

or its products are described as agents participating in some events, with the help of appropriate verbs 

indicating specific events (Figure 4.22). Different molecular-level or phenotypic effects are described as the 

other arguments of such events. As described above, PAS is a representation of semantic relationships 

between arguments with specified roles and a verb relating to a particular event narrated in a sentence. 

Thus, PAS should be a natural choice for IE especially event extraction in molecular biology.       
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Figure 4.22 - Molecular events as described by associated predicates: A hypothetical signal 

transduction pathway of an idealized cell is shown here. The signal is triggered at the outer membrane by 

the ligand binding to a receptor dimer. This signal is mediated (by various proteins) to the nucleus of the 

cell through various events (protein-protein interactions, phosphorylation etc.) and leads to initiation of 

transcription of a gene. Following transcription, splicing and translation, the protein product inhibits 

receptor signalling. Thus, it regulates its own expression via a negative feedback loop. The direction of 

information flow is shown with arrows. Cell compartments, molecular entities and predicates describing 

various events are shown. The predicates analyzed in this work aim to cover events in gene expression, 

regulation and signalling processes 

 

4.2.3. - Guidelines for defining PAS 
For defining PAS for biomedical texts, PropBank’s scheme was adapted with necessary changes. 

To define PAS for any verb, a survey of the usage of the verb and presence of various arguments was made 

from a set of sample sentences in a representative corpus. A verb may have several senses depending upon 

the usage (e.g., express- to speak or send quickly). In PASBio, these senses were divided with the aim of 
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obtaining fine-grained semantic senses using the WordNet lexicon (Miller, 1990). Each PAS frame in of 

PASBio contains a set of core arguments and auxiliary arguments. An argument is declared as a core 

argument if it is important to complete the meaning of the event described in the sentence. Nevertheless, if 

an argument is important but there is no evidence that the argument exists together with the predicate in at 

least 20% of the example sentences, it may not be considered a core argument. Arg X (with X, a cardinal 

number, starting from 0 and incremented with each additional argument) and ArgR are used with a 

mnemonic label for any core arguments. The difference between Arg X and ArgR is illustrated for the PAS 

of mutate in the next section (Figure 4.23). The mnemonic label is a short description of the semantic role 

played by the argument. Biological function and usage of the argument were considered to describe 

semantic roles in PAS. No attempt was made to ensure the consistency of mapping between argument 

labels (argument name) and the roles (the mnemonic labels) played by the arguments, except Arg0. Arg0 

was reserved for the argument playing the semantic role of an agent. In cases where Arg0 was not present, 

the first core argument was labelled Arg1 in the PAS frames of such verbs. See PAS frames for mutate 

(Figure 4.23), express (Figure 4.27) and transform.02 (Figure 4.28) as examples.  

  The sentence constituents identified as adverbial, negation and modality were annotated with the 

tag ArgM-type (ADV and MAN in the case of adverbial, NEG in case of negation, and MOD in case of 

modality), in addition the core arguments. However, only adverbials in terms of adverbs were considered to 

be annotated as ArgM-MAN (for a manner adverb) or ArgM-ADV (for other types of adverbs). If adverbial 

phrases or adverbial clauses are mandatory for expressing events indicated by particular predicates, they are 

defined as core arguments within the PAS frames. For example, an adverbial phrase playing the role of a 

locative modifier was included in the set of core arguments for the predicate initiate. (Refer to example 

sentence “Apparently HeLa cells either initiate transcription at multiple sites within RPS14 exon 1.”). 

Moreover, adverbs that play roles of manner modifiers (e.g. normally, genetically, etc.) were distinguished 

from other adverbs.  

A manner adverb deserves special distinction from other adverb types because it shows how a 

certain action is performed. Annotating a manner adverb is very important to understand facts in a sentence 

from biomedical texts. For example, “normally” in the sentence “Mice have previously been shown to 

develop normally” is necessary for IE in order to understand that the development process was normal. 

Other types of adverbs, for example aspectual modifiers that give information about whether the temporal 

information about affairs (e.g. “still” in the sentence “The mice were still developing normally even after 

the deletion Msp1 gene.”), adverbs acting as frequency modifiers (e.g. “always” in the sentence “We found 

IL-2 expression always on the plasma membrane.”), adverbs acting as focusing modifiers like even, only, 

also, and too (e.g. “The transcription is initiated only in female blastoderm embryos.”), were tagged as 

ArgM-ADV. In case of negation and modality, ArgM-NEG and ArgM-MOD are given directly to a negator 

word (i.e. not or n’t) and a modal verb (i.e. will, may, can, shall, must, might, should, could and would) 

respectively. Negations (operating at the sentence level) and modality (operating at various levels) were not 

defined as core arguments because linguistically neither of them can be considered an argument within the 
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PAS frames. They are only worth annotating from an IE perspective if they exist in a same clause where a 

focused predicate exists. Similarly, adverbials were also considered worthy of being annotated when 

present as they can significantly alter or even reverse the meaning of the sentence. 

 

4.2.4. Examples of defined PAS 
Three important cases were examined to assess domain specific behaviour of biomedical 

predicates with the assumption that domain specific usage of verbs in biology would influence its PAS for 

biological domain. They are (1) verbs that are rarely used in general language (e.g. splice) or have a unique 

biological interpretation (e.g. express, translate, etc.), (2) verbs that have a similar meaning used in the 

general and biological texts but show different patterns of usage (e.g. alter, initiate, etc.), and (3) verbs that 

are used with the same meaning and usage style in both domains (e.g. abolish, delete, etc.). PAS frames 

proposed by Propbank were taken as a representative for the verb usage in general English. Therefore, PAS 

frames in PASBio were compared to those in PropBank for a verb under consideration. The results of the 

comparison fall in to four groups of verbs. They are discussed below: 

 

Verbs with same semantic sense but require more core arguments 
As an example, consider the event of mutation, beneficial mutations get selected in the population 

paving the way for evolution and harmful mutations cause diseases that may be inherited. The verb mutate 

describe the physical changes at the molecular sequence level. PropBank defines two arguments for this 

verb which are Arg0: agent and Arg1: mutated entity, but four arguments are needed for a complete PAS 

frame of the verb mutate in biomedical text (Figure 4.23). As mentioned before, Arg0 is reserved only for 

the argument playing the semantic role of agent. However, the sentences commonly used to describe 

mutate events are normally written in passive forms. Therefore, the agent of the event is not stated 

explicitly in most of the sentences.  

Hence, core arguments for mutate start from Arg1 as the position for the agent is left empty unless 

there is mention of a mutagenic agent. Arg2 describes the NE participating in the event and is analogous to 

PropBank’s Arg1. Thus, Arg1, Arg3, and ArgR defined in PASBio for mutate are extra arguments 

compared to PropBank. Arguments Arg1and Arg3 are captured conforming to the linguistic criteria that the 

semantic role of an element is implied when the element is omitted and that element should be an argument 

(Meyers et al., 1994). From the biological perspective, these two extra arguments are implied. Noticeably, 

consequences of the event driven by the verb mutate are often seen in examples. Apart from “changes at 

molecular level” assigned as Arg3, the consequence, “changes at phenotypic level” is suggested as ArgR 

(explained below). Sentence 1.1, 1.2, and 1.3 support this explanation. 
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 1) Predicate: MUTATE 
 Argument Structure for Biology PropBank Argument Structure 
 
   Arg1: physical location of mutation   //exon,intron,   
              domain// 
   Arg2: mutated entity      // gene // 
   Arg3: changes at molecular level  
   ArgR: changes at phenotype level 
 

   
 Sense = to undergo and  cause to undergo    

                mutation 
   Arg0: agent 
   Arg1: entity undergoing mutation 
 

Match to MUTATE senses in WordNet: sense 1 – undergo mutation 
Sentence 1.1 The exon 5 mutated allele with the premature translation termination resulted in severe 
deficiency of Hex A. 
 

Pred: mutate 
Arg1: exon 5 
Arg2: allele 
Arg3: [with] the premature translation termination 
ArgR: resulted in severe deficiency of Hex A 

 
Sentence 1.2 The gene mutated in variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf 
mutant mice encodes a novel predicted transmembrane protein. 
 

Pred: mutate 
Arg1: - 
Arg2: gene 
Arg3: [in] variant late-infantile neuronal ceroid lipofuscinosis (CLN6) and in nclf   
      mutant mice 
ArgR: encodes a novel predicted transmembrane protein 
 

Sentence 1.3 Transient expression of the exon 8 mutated alpha-chain cDNA in COS-1 cells resulted in 
deficiency of enzymatic activity. 
 

Pred: mutate 
Arg1: exon 8 
Arg2: alpha-chain cDNA in COS-1 cells 
Arg3: - 
ArgR: resulted in deficiency of enzymatic activity 
 

Figure 4.23 - PAS for mutate, a verb in group A: The PAS of mutate contains more arguments than 

PropBank (Kingsbury and Palmer, 2002; Kingsbury et al., 2002). Extra arguments responsible for 

consequences of the event mutate are considered as core arguments as they are often seen in sentences from 

biomedical documents. WordNet (Miller, 1990) sense 1 – undergo mutation corresponds to the biological 

sense of mutate. Three sentences in the lower panel illustrate how surface structure was mapped into 

PASBio’s predicate-argument structure. 
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2) Predicate: INITIATE 
 Argument Structure for Biology PropBank Argument 

Structure 
 
  Arg0: agent             //gene// 
  Arg1: entity created    //transcription or translation// 
  Arg2: specific location on gene       //exon or intron// 
  Arg3: location as tissue or cell  
  Arg4: method 
        

 
 Sense = begin 
     Arg0: agent 
     Arg2: theme (-creation) 
     Arg3: instrument 
 

Match to INITIATE senses in WordNet: sense 1 – brought into being 
Sentence 2.1 Apparently HeLa cells either initiate transcription at multiple sites within RPS14 exon 1, or 
capped 5' oligonucleotides are removed from most S14 mRNAs posttranscription. 
 

Pred: initiate 
Arg0: - 
Arg1: transcription 
Arg2: [at] multiple sites within RPS14 exon 1 
Arg3: HeLa cells 
Arg4: - 

 
Sentence 2.2 I kappa B-epsilon translation initiates from an internal ATG codon to give rise to a protein 
of 45 kDa, which exists as multiple phosphorylated isoforms in resting cells. 
 

Pred: initiate 
Arg0: - 
Arg1: I kappa B-epsilon translation 
Arg2: [from] an internal ATG codon 
Arg3: - 
Arg4: - 

 
Sentence 2.3 Since RTKs initiate signaling by recruiting downstream components to the activated 
receptor, proteins that are immediately downstreamof an activated RTK can be identified by first 
identifying sequences in the RTK that are necessary to activate downstream signaling (Schlessinger and 
Ullrich, 1992; Pawson, 1995). 
 

Pred: initiate 
Arg0: RTKs 
Arg1: signaling 
Arg2: - 
Arg3: - 
Arg4: [by] recruiting downstream components to the activated receptor 
 

Figure 4.24 - PAS for initiate, a verb in Group A: The PAS frame of initiate also belongs to group A – 

same sense, more arguments. Similar to the predicate mutate, additional arguments responsible for spatial 

information of the event described by intitate are proposed to be core arguments. 

 

 45



                                                                                                                            IV. Results 

 The argument ArgR:results/consequences is the argument providing information about 

consequences after the event denoted by the predicate occurs (Figure 4.23). For mutate, most of the 

examined sentences contain ArgR, revealing the necessity of it. Moreover, the requirement of this argument 

coincides with biological observations. Therefore it is considered as a core argument (more precisely an IE 

core argument) and named as ArgR instead of ArgX (a core argument from a purely linguistic perspective).  

This distinction is made under the rule that ArgX has to play a role during the event but not after the event. 

This condition is depicted by a formula like “mutation event = ( ArgX + mutation + ArgX ) + ArgR”. 

Empirically, ArgR is seen with verbs relating to an abnormal biological phenomenon or tissue specific 

differences. Examples of other verbs that need this argument are skip, delete, etc. 

PAS frame of initiate also requires additional core arguments. Arg2 (Figure 4.24, sentences 2.1 

and 2.2) describes the point of transcription initiation and Arg3 provides information about the tissue/cell 

where the gene (or product) is expressed. In PropBank, the sentence segment defined by the parser with the 

LOC (location) tag is considered as non-required element. However, the extraction of spatial information is 

very important from the biological perspective. Furthermore, a variety of semantic roles are present in the 

subject position in the sentence from biomedical texts (Figure 4.24). In Sentence 2.1 “HeLa cells” is 

syntactically the subject, which seems to be the agent of an initiate event, but at the molecular level only a 

polymerase bound to a target gene may initiate the transcription. “HeLa cells” is annotated as Arg3 

referring to tissue/ cell (location) in which the transcription takes place instead of Arg0: agent. In sentence 

2.2, “I kappa B-epsilon translation” is also a subject as in the previous example, but it is “entity created” 

assigned as Arg1. Only in Sentence 2.3 (describing initiation of a signalling event), the subject of the 

sentence fills the semantic role “agent”, so a subject “RTKs” can be annotated as Arg0. Additionally, the 

point to note is “the entity created” in sentence 2.3 is different from sentence 2.1 and 2.2 as it is a signalling 

event that is initiated, but not a transcription or translation event. 

 

 Verbs that are used with same semantic sense but take fewer core arguments 
The verb block both in biomedical texts and in newswire texts has very similar semantics (Figure 

4.25). However, an event described by the verb block in the biomedical domain may not contain a 

secondary predication and an instrument most of the time. As mentioned before, a secondary predication in 

itself is capable of instantiating another PAS frame. For example, in the following sentence from PropBank 

“[JohnArg0] blocked [Mary Arg1] from [completing her dissertation Arg2] with [his constant pestering Arg3].” 

the Arg2-secondary predication is annotated for “completing her dissertation” because this contains in itself 

the PAS of the verb complete. In this example, the meaning of the event denoted by block cannot be 

understood completely if the sentence just states as “[JohnArg0] blocked [Mary Arg1].” Thus, it is necessary to 

mention the action being stopped. In contrast, in the biomedical texts, by mention of only the entity being 

stopped (Sentence 3.1-3.3), an expert reader can understand that the full meaning of the sentence without 

requiring the presence of a secondary predication. Similarly, an instrument used to block is encoded in the 

nature of an agent or causer.  
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In the PAS of block (Figure 4.25) core arguments exist only in Sentences 3.1 and 3.2 (the agent is 

not mentioned). In Sentence 3.3, the word denoting manner (specifically) is marked as a secondary 

argument using symbol ArgM-MAN. The secondary argument is not considered in the PAS as a core 

argument but it is used when a sentence is annotated. This secondary argument is not important or not 

expected. The semantic role of this argument is independent of the verb. PropBank also uses this scheme. 

 

3) Predicate: BLOCK 
Argument Structure for Biology PropBank Argument Structure 
 

 Arg0: agent, causer       
 Arg1: theme //entity being stopped// 
 

   
  Sense = oppose, halt, stop 
      Arg0: agent 
      Arg1: theme (action or object being stopped) 
      Arg2: secondary predication 
      Arg3: instrument                      
 

Match to BLOCK senses in WordNet: sense 3 – stop from happening or developing 
Sentence 3.1 Tagetin is more specific for distinguishing between different RNA polymerases because it 
blocks RNA polymerase during elongation. 
 

Pred: block 
Arg0: it 
Arg1: RNA polymerase during elongation 
 

Sentence 3.2 Membranes were blocked in TBST (Tris-buffered saline, 0.05% Tween-20) containing 5% 
bovine serum albumin (for anti-phosphoryrosine blots) or skimmed milk and probed with antibodies. 
 

Pred: block 
Arg0: - 
Arg1: Membranes 

 
Sentence 3.3 Mutations at the 3’ splice site that specifically block step II do not affect the association of 
hPrps 16 and 17 with the spliceosome, indicating that these factors may function at a stage of step II prior 
to recognition of the 3’ splice site. 
 

Pred: recognize 
Arg0: Mutation at the 3’ splice site 
Arg1: step II  
ArgM-MAN: specifically 
 

Figure 4.25 - PAS for block, a verb in group B: The PAS frame for block, belonging to group B – same 

sense, fewer arguments is proposed here. Though this verb is used with the identical meaning in both 

biomedical and business news corpus, the set of arguments differ. Also, the use of ArgM-MAN is 

illustrated here.  
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Verbs that are used with same semantic sense and have identical frames 
Specialization of domain hasn’t affected PAS frames of verbs in this group.  

 

5) Predicate: CONFER 
Argument Structure for Biology PropBank Argument 

Structure 
 
   Arg0: agent //mechanism, process, entity// 
   Arg1: given biological property 
  Arg2: entity receiving biological property  //gene product, cell// 

 

  
  Sense = grant, give 
      Arg0: agent 
      Arg1: gift 
      Arg2: given to 

 
Match to CONFER senses in WordNet: sense 2 – present 
Sentence 5.1 Besides these side chain interactions with the 06-alkyl group, structure-based analysis of 

mutational data suggests that substitutions at Gly156 and Lys165 confer resistance to 06-BG through 
backbone distortions. 

 
Pred: confer 

Arg0: substitutions at Gly156 and Lys165 
Arg1: resistance 
Arg2: [to] 06-BG 

 
Sentence 5.2 The portion of the STATs conferring specificity for either a MAPK or a MAPK 
substrate kinase (MAPKAP) has not been determined. 
 

Pred: confer 
Arg0: The portion of the STATs 
Arg1: specificity 
Arg2: [for] either a MAPK or a MAPK substrate kinase (MAPKAP) 
 

Figure 4.26 - PAS for confer, a verb in group C: Predicate confer belong to group C – same sense, same 

structure, so their structures constructed in PASBio are as same as in PropBank  as shown in Frame 5 and 

Frame 6, respectively 

 

An example of such a predicate is ‘confer’ that is used with the meaning “to give to someone or something” 

(Figure 4.26).  

 

Verbs with domain specific semantics 
The word express is used in the biomedical texts with the meaning “to manifest the existence of a 

gene or a gene product” (or detection of the same during experiments) unlike its normal usage with the 

meaning of “give an opinion or send quickly” (Figure 4.27). The predicate transform, is used in biomedical 

text with two senses: “to cause (a cell) to undergo genetic (or neoplastic) transformation” and “to transfer a 

gene from source organism into target organism altering the target” (Figure 4.28). Even though the first 

meaning of transform is similar to the sense of “change” found in PropBank, there is still a semantic 

difference between them. In the biomedical literature sentences describing genetic transformations 
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(Sentences 8.1-8.3) mention only the agent or causer, the entity getting transformed, and the effects of 

transformation. The start state of the entity undergoing transformation is not mentioned as it usually refers 

to a normal condition of the entity. Transform in the second sense always occurs in a sentence connected by 

the preposition into, and in the passive voice form, in which no mention is made with regard to the agent. 

 

7) Predicate: EXPRESS 
Argument Structure for Biology PropBank Argument Structure 
 
   Arg1: named entity  //gene or gene products// 
   Arg2: property of the existing name entity 
   Arg3: location referring to organelle, cell or tissue 
 

   
  Sense = say  (express.01) 
      Arg0: speak 
      Arg1: utterance 
      Arg2: hearer  
    Sense = send very quickly (express.02) 
      Arg0: sender 
      Arg1: thing sent 
      Arg2: sent to 
     

Match to EXPRESS senses in WordNet: sense 5 – manifest the effects of a gene or genetic trait 
Sentence 7.1 Northern blot analysis with mRNA from eight different human tissues demonstrated that the 
enzyme was expressed exclusively in brain, with two mRNA isoforms of 2.4 and 4.0 kb.   

 
Pred: express 

Arg1: the enzyme 
Arg2: [with] two mRNA isoforms of 2.4 and 4.0 kb 
Arg3: [in] brain 
 

Sentence 7.2 Two equally abundant mRNAs for il8ra, 2.0 and 2.4 kilobases in length, are expressed in 
neutrophils and arise from usage of two alternative polyadenylation signals. 

 
Pred: express 

       Arg1: mRNAs for il8ra 
       Arg2: 2.0 and 2.4 kilobases in length 
       Arg3: [in] neutrophils 
 
Sentence 7.3 T cells from double TCR transgenic mice express only one or the other of the two available 
TCRs at the cell surface. 

 
Pred: express 

Arg1: one or the other of the two available TCRs 
Arg2: - 
Arg3: T cells from double TCR transgenic mice 

 

Figure 4.27 – PAS of express, a verb in group D: Predicate express is used in biological documents with 

WordNet sense 5 – manifest the effects of a gene or genetic trait which is totally different from the usage 

found in business news (i.e. say and send very quickly).  
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10) Predicate: TRANSFORM.01 
Argument Structure for Biology PropBank Argument Structure 

 
 Sense = to cause (a cell) to undergo genetic  
         transformation 

       Arg0: agent/causer of transformation 
       Arg1: entity undergoing transformation 
       Arg2: effect of transformation/end state 

 

   
  Sense = change 
      Arg0: causer of transformation 
      Arg1: thing changing 
      Arg2: end state 
      Arg3: start state      

Match to TRANSFORM senses in WordNet: sense 2 – change or alter in form, appearance, or nature 
Sentence 8.1 We and others have found that FGF8b can transform the midbrain into a cerebellum fate, 
whereas FGF8a can promote midbrain development. 
 

Pred: transform 
Arg0: FGF8b  
Arg1: the midbrain 
Arg2: [into] a cerebellum fate 
 

Sentence 8.2 Phospholiipase D (PLD) is known to stimulate cell cycle progression and to transform 
murine fibroblast cells into tumorigenic forms, although the precise mechanisms are not elucidated. 
  
    Pred: transform 

Arg0: Phospholipase D (PLD)  
Arg1: murine fibroblast cells 
Arg2: [into] tumorigenic forms 
 

Sentence 8.3 Overexpression of the retroviral oncoprotein v-Rel can rapidly transform and immortalize a 
variety of avian cells in culture. 
 

Pred: transform 
Arg0: Overexpression of the retroviral oncoprotein v-Rel  
Arg1: a variety of avian cells in culture  
Arg2: - 
 

 

Figure 4.28 – Two PAS frames for transform, a verb in group D: PASBio has different PAS frames for 

different senses of transform found in biological corpus. PAS as transform.01 is defined based on the 

meaning – change or alter in form, appearance, or nature (WordNet sense 2) and transform.02 – change 

(bacteria cell) into a genetically distinct cell by the introduction of DNA from another cell of the same ore 

closely related species (WordNet sense 6; next page). 
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9) Predicate: TRANSFORM.02 = TRANSFORM INTO 
Argument Structure for Biology PropBank Argument Structure 

 Sense = to transfer gene from source   
         organism into target organism 
   Arg1: entity being inserted 

       Arg2: organism or cell undergoing  
             transformation 
 

  Sense = change 
      Arg0: causer of transformation 
      Arg1: thing changing 
      Arg2: end state 
      Arg3: start state      

Match to TRANSFORM senses in WordNet: sense 6 - change (a bacterial cell) into a genetically  
distinct cell by the introduction of DNA from another cell of the same or closely related  
species) 
Sentence 9.1 This construct was transformed into the yeast strain HF7c (Clontech). 
 

Pred: transform into 
Arg1: This construct 
Arg2: the yeast strain HF7c (Clontech) 
 

Sentence 9.2 For expression of the recombinant protein, pET28a-5 was transformed into Escherichia  
coli strain BL21(DE3). 
 

Pred: transform 
Arg1: pET28a-5 
Arg2: Escherichia coli strain BL21(DE3) 
 

Sentence 9.3 To generate GST fusion proteins, the relevant DNA fragments were cloned into pGex2T 
(Pharmacia) and transformed into the bacterial strains BL21 or TOPP (Stratagene). 
 

Pred: transform 
Arg1: the relevant DNA fragments 
Arg2: the bacterial strains BL21 or TOPP (Stratagene) 
 

 
 

4.2.5. - Complexities in Biology Texts 
In the discussion so far it has been assumed that the predicate is at the centre of semantic 

information. However, argument contents can also alter the event description specified by the predicate. 

This can be illustrated with sentences that describe ‘alternative splicing’ event. Alternative splicing is used 

to generate multiple mRNA transcripts from a single gene and hence is a helpful event for increasing the 

functional complexity of eukaryotic systems.   

Consider the following example of a set of sentences that talk about the ‘expression’ of a single 

type of mature mRNA generated from ‘splicing’ of pre-mRNA and generation (and expression) of multiple 

mature mRNA transcripts with different properties from a single type of pre-mRNA. Sentences annotated 

follow PASBio’s frame for express: (a) “Northern blot analysis with mRNA from eight different human 

tissues demonstrated that [the enzyme Arg1] was expressed exclusively [in brain Arg3], [with two mRNA 

isoforms of 2.4 and 4.0 kb Arg2].” and (b) “[A complementary DNA clone encoding the large subunit of the 

essential mammalian pre-messenger RNA splicing component 2 snRNP auxiliary factor (U2AF65) Arg1] has 

been isolated and expressed [in vitro Arg3].” Sentence (a) is considered as a sentence denoting the 
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alternative splicing event but sentence (b) is considered as a negative (not describing alternative splicing) 

sentence, which talks about expression of an mRNA of a splicing factor. 

It would be difficult, based on word contents or regular expression methods, to put these two 

examples into different ‘bins’ for alternative splicing events. But the discussion about the length of the two 

different transcripts in Arg2 (with two mRNA isoforms of 2.4 and 4.0 kb) in the first sentence can be 

helpful to understand it as a sentence discussing alternative splicing. On the other hand, the later sentence 

contains all the interesting words (e.g., mRNA, express and splicing) but misses Arg2, hence describes just 

an expression event. 

 

4.3. - Extraction of information about transcript diversity from 

MEDLINE 
As mentioned in the previous section, generation of alternative transcript diversity is considered a very 

important task for functional diversity and evolution of eukaryotes (also see Introduction). Alternative 

transcripts generated by alternative splicing (AS) allow eukaryotes to generate an expanded proteome from 

a limited gene pool. Differential promoter usage and alternative polyadenylation in synergy with AS may 

change terminal exons or in general regulate expression of mRNA transcripts (Black, 2000; Edwalds-

Gilbert et al., 1997; Zavolan et al., 2003). Therefore, an information extraction tool is much required by the 

community working on elucidating the extent of usage of these mechanisms and their functional 

implications in different tissues in a single organism and across species. It will also help computational 

methods that are under development to map the alternative transcript universe. Thus, it is important to 

identify descriptions of alternative transcripts from abstracts in MEDLINE. Information including gene 

names, species, tissues, expression-specificity, event mechanisms, and experimental methods could be 

extracted to generate a database of events that generate transcript diversity.  

 

4.3.1. - Overall strategy and generation of the database 
To extract information about transcript diversity (TD) and associated spatio-temporal information 

scattered throughout MEDLINE, a composite procedure was devised (Figure 4.31). In the first step, 

sentences containing TD information were identified within the papers’ abstracts (IR/text categorization 

step). As discussed in Intorduction, rule based methods tend to perform worse than machine learning 

methods due to existence of multiple syntactic patterns. Moreover, as shown in the section 4.2.5 extracting 

sentences regarding the transcript diversity would be difficult only on the basis of word contents. Thus, a 

text classifier based on machine learning methods was trained for the sentence classification task by 

inductive machine learning (Mitchell, 1997) on an annotated corpus (Joachims, 2001; Nello Cristiani, 

2000; Vapnik, 1999). The entire MEDLINE database was processed using the trained classifier in order to 

identify sentences describing TD within the abstracts.  
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Figure 4.31 - Creating specialized databases for events of interest:  A database of physiologically 

occurring AS events can be generated in two steps. Each step may involve machine learning or rule based 

methods. The first step involves the identification of sentences from scientific text. These sentences can be 

parsed in a second step for extracting frequently occurring semantic patterns. 

 

In the second (IE) step (Figure 4.31), sentences were parsed and sentence constituents were 

assigned different semantic categories (see Methods).  Finally, each abstract with information about 

alternative transcripts (retrieved by the SVM classifier) was mapped to entries in Swissprot (Bairoch and 

Apweiler, 2000), RefSeq (Pruitt and Maglott, 2001), GenBank (Benson et al., 2004), and Ensembl (Birney 

et al., 2004) databases, when possible. This not only provides the sequence information at genome, 

transcript, and protein levels for the genes described in the abstracts but also allow to an interested user to 

access structural and functional information about these genes stored in various sequence databases. All 

this information obtained for each PubMed entry constitutes an entry in LSAT (Figure 4.32). 
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Figure 4.32 - An example LSAT entry: A typical database entry is shown in the figure. Apart from the 

text extraction data, LSAT provides links to PubMed, GenBank, Refseq, Swissprot and Ensembl. The entry 

for the gene Neuropsin is shown here. This gene is already annotated for alternative splicing in Swissprot. 

However, text extraction data point to the fact that it is a species-specific splicing absent in mouse.    

 

Semantic Category Presence (%) Recall (%) Precision (%) Total Instances 

Event mechanism 79 92 96 13103 

Gene names 71 82 88 15905 

Tissues 22 87 96 5028 

Species 21 97 99 4093 

Number of isoforms 20 77 100 2965 

Diff. In structure/function 12 63 86 1620 

Experimental methods 11 57 82 1071 

Specificity 5 100 85 1589 

 

Table 4.31 – Performance of at the extraction of semantic patterns. 
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Eight different semantic categories describing biologically relevant data were identified in the 

sentences describing TD among which are event mechanism, species, tissue-specificity, and experimental 

methods (Table 4.31). 

 

4.3.2. – Experiments on sentence classification 
Sentence classification was carried out with the inductive learning procedure to obtain sentences 

about alternative transcripts. Inductive learning methods learn patterns from the features extracted from the 

training set and generalize. The generalization performance of many methods degrades when dealing with 

large amounts of rarely occurring features. Text data is a typical example of this situation sometimes 

termed as ‘the curse of dimensionality’. Moreover, the process of preparing a reliable training set is 

expensive and time-consuming. Hence, a good learning method should be able to learn from a small 

amount of training examples and should be able to handle large number of features. The sentence 

classification performance of well-known text categorization methods was compared to find the best 

classification method (Mitchell, 1997). These methods are 1) naïve Bayes, 2) maximum entropy 3) 

Expectation Maximization (EM), 4) variants of the term frequency-inverse document frequency (tf*idf) 

methods, 5) K-nearest neighbour (KNN) algorithm and 6) support vector machines (SVM) Using a 

relatively large corpus of 17,760 sentences, the classification performance of the above mentioned methods 

was checked with different fractions of the training set in order to choose the best performing method.  

 

Selecting the best sentence classification method 
Intuitively, while training with the most basic set, the learning method good at feature selection 

would outperform the rest. Hence, classification performance of various methods was compared with 

different fractions of the training set while utilizing the simplest feature set (bag of words; see Methods) 

that contained more than 23,000 training features.   

As expected, the overall classification performance, calculated as the F-measure, improved with 

the amount of training data (Figure 4.33). However, the SVM and the maximum entropy classifiers 

consistently outperformed other categorization methods. Also, the SVM classifier with the RBF kernel 

outperformed that with linear kernel even though text data is hypothesized to be linear. The KNN algorithm 

with a number of neighbours ranging from 5 to 50 either suffered from memory problems or didn’t seem to 

learn the classification rule. It was clear that the SVM with three different kernels performed better than the 

other methods and was taken for further characterization.             
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Figure 4.33 - Comparison of various text-categorization methods: The classification performance of 

various methods (F-measure) was measured with different fractions of training set were used for learning. 

Each data point here is a mean of results from four cross validations. (EM - Expectation Maximization and 

tf*idf - term frequency-inverse document frequency methods) 

 

Parameter optimization for the SVM learning 
The classification performance of the SVM was explored further with three different kernel 

functions and associated learning parameters (see Methods). For all kernel functions the value of parameter 

C in the SVM optimization problem controls the trade-off between the training error and the margin 

(Joachims, 2001). The value of C depends on the training data and it was determined empirically. Also, the 

RBF and sigmoid functions have one and two variable parameters, respectively, that can affect the learning 

process (see Methods). The value for parameter C was characterized with different values of gamma for the 

RBF kernel and different values of r for the sigmoid kernel with bag of words as the input feature set 

(Figure 4.34). The value of 1.5 for gamma and the value of 10 for C were the best classification parameter 

values for the SVM with the RBF kernel. Similarly, the value of 0.01 for r and the value of 1000 for C were 

the best parameter values for the SVM with the sigmoid kernel.   

 

 

 

 56



                                                                                                                            IV. Results 

 

 

 

 

Figure 4.34 - Parameter optimization for SVM learning: Different values of gamma for the RBF kernel 

and r for the sigmoid kernel at different values of parameter C (figure 3a) were studied as a function of F-

measure; ‘bag of words’ was used as the input feature set. Each data point is an average from four cross-

validations. 

 

Feature Enrichment  
The process of extracting a rich feature set from the training examples is the most important step 

in machine learning because methods provided with rich features need fewer training examples and provide 

better generalization.  

Feature enrichment was achieved as follows (Figure 4.35). Many phrases (word bi-grams and tri-

grams; e.g., alternative transcript or alternative first exon; see Appendix) frequently present in the training 
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sentences were incorporated as additional input features, as a way to add the domain knowledge. Cardinal 

numbers were summarized as a single feature. In addition, synonyms were defined for the sparsely 

occurring features (e.g., long transcript, larger transcript and elongated transcript). Two additional feature 

sets were generated by combining phrases and synonyms with ‘bag of words’ and ‘vocabulary’ (see 

Methods).  

 

 

 

 

 

Sentence: Altogether, five alternatively spliced transcripts have been observed

Layer 1: change case, stem,  sentence boundary detection and removal of uninformative words etc

five alternate splice transcript  observe 
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Figure 4.35 – An example of feature enrichment: The procedure of feature enrichment is illustrated here 

which merges two different sentences to a single patter using three layers of text operations. 

  

The learning performance of the SVM with all three kernels was checked with these feature sets 

with different values of C (Figure 4.36). The input feature set containing bag of words and phrases 

performed best for SVM with all three kernels. Again, the SVM with the RBF kernel achieved the best 

performance. It achieved a mean F-measure value of 91% when performing four randomized trials with 

60% of total corpus as training set and the rest as the test set.  
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Figure 4.36 – Feature set selection for SVM learning: Performance of SVM with three different kernels 

at different values of C was compared using four different feature sets. Each data point is an average from 

four cross-validations. 
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Figure 4.37 – Evaluation of SVM learning performance: Number of support vectors (top panel) and 

associated learning errors (bottom panel) brought about by the SVM with best learning parameters and 

three different kernels. Their learning performances with ‘bag of words’ and ‘bag of words and phrases’ as 

feature sets are shown in the figure. The C values were 10, 100 and 1000 for linear, RBF and sigmoid 

kernels, respectively. The gamma value of 1.5 for the RBF kernel and r value of 0.1 for sigmoid kernel 

were used. Each data point is an average of four cross validations. 

 60



                                                                                                                            IV. Results 

Learning performance of the SVM 
Support vectors are the training examples closest to the hyperplane and the number of support 

vectors utilized for deciding the margin is an indication of the complexity of an SVM model. The number 

of support vectors used by the SVM with linear, sigmoid and RBF kernels increased in that order (Figure 

4.37). Also, for SVM with linear and sigmoid kernels the required number of support vectors decreased 

with the richness of input feature sets, in contrast to the SVM with the RBF kernel (Figure 4.37).  

The training errors were measured using the Хiα estimators supplied with the SVMlight software. It gave 

very reliable estimates of the classifier performance on the test set. The training error is lowest when bag of 

words and phrases was used as a feature set in case of each kernel (Figure 4.37). The SVM with RBF 

kernel function brought the lowest training error (Figure 4.37). The polynomial functions of order more 

than one performed equivalently or poorly than the linear function in the experiments described above (data 

not shown). These results suggested that SVM with the RBF kernel was the best performing classifier 

(Figures 4.34, 4.36, and 4.37). Hence, the SVM with the RBF kernel with the gamma value of 1.5, C value 

of 10 and bag of words and phrases as the feature set, was used for the classification of the entire 

MEDLINE.  

 

Benchmarking the classifier performance 
The trained classifier identified 31,123 sentences from more than 12 million MEDLINE abstracts. 

A manual check for false positives resulted in retaining 20,549 sentences describing TD. This gives 66.02% 

accuracy to the classifier while classifying all sentences in MEDLINE. Details on the training set and the 

SVM training procedure are described in the Methods section. 

The recall of the classifier was assessed against manual annotations of alternative splicing provided by the 

MEDLINE curators. All entries (5919) with the MeSH term ‘alternative splicing’ and describing the 

generation of physiologically relevant alternative transcript were taken from the MEDLINE 2004 database 

(see Methods). The classifier detected 4400 out of 5919 abstracts, resulting in a recall of 74.33%. The recall 

of the classifier in identifying alternative splicing in different species (human, mouse, rat and Drosophila), 

was also measured using manually curated AS annotations from Swissprot and MEDLINE. For each of 

these four species, the classifier results were compared against MEDLINE entries with the MeSH term 

alternative splicing and Swissprot entries (Bairoch and Apweiler, 2000) with the keyword alternative 

splicing. The average recall of the classifier was 61% (Table 4.32; see methods).  

The abstracts missed by the SVM classifier were checked manually. In many cases the sentences (abstracts) 

missed by the classifier were describing alternative splicing in normal versus diseased states and they were 

labelled as negatives with very low confidence. However, these abstracts didn’t explicitly mention changes 

in gene sequence as the basis of alternative splicing. Hence, they were counted as false negatives. The F-

measure while classifying all sentences in MEDLINE is 70%. 
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Species MEDLINE entries Swissprot entries 

Total Detected Percentage Total Detected Percentage 

Human 4378 2841 64.89 2020 1364 67.52 

Mouse 1537 779 50.68 1236 542 43.85 

Rat 1043 600 57.52 431 305 70.76 

Drosophila 277 149 53.79 331 273 82.47 

Table 4.32 - Recall of the SVM classifier. 

 

4.3.3. - Analysis of extracted sentences  
The sentences describing TD extracted by the SVM classifier were divided into three different 

categories. Sentences in the first category are those in which the mechanism responsible for TD is present 

(Figure 3.41; category 1). Some of these sentences could be extracted with keywords. However, in 

comparison to sentences describing alternative splicing and alternative polyadenylation, those describing 

the use of different promoter display more variability and would be more difficult to retrieve.  

Sentences belonging to the second category may describe the observation of TD but the 

mechanism is presumed (Figure 3.41; category 2). On the other hand, sentences without any mechanism 

description were also very common (Figure 3.41; category 3). For sentences in this category, the candidate 

mechanism was found in many cases in the full-text article when searched manually. Sentences of 

categories 2 and 3 may reflect practical problems while working with biological samples, lack of space in 

abstract or domain specific writing styles. However, the description may prove useful for elucidating the 

mechanism involved. For example, description in sentence 10 suggests usage of alternative first exons that 

may be combined with alternative promoters and alternative splicing as a plausible mechanism for sentence 

11. This type of sentences may not be easily identifiable using keywords; yet exact mechanism information 

could be obtained by combining information extracted from the text with that coming from high-throughput 

data (see below).  

 

4.3.4. - Semantic role labeling  
Semantic parsing of sentences is a difficult but important task towards natural language 

understanding, and has immediate applications in tasks such as IE and question answering. During the task 

of semantic role labeling, for each verb in a sentence, the goal is to identify all constituents that fill a 

semantic role, and to determine their roles (see Introduction, supplementary material). For example, in a 

sentence containing the verb express sentence constituents may have roles such as gene name, number of 

isoforms, tissue-specificity and mechanism. These roles are formalized by the PAS frame semantics. 

Eight frequently present semantic categories were identified in the sentences extracted from MEDLINE and 

performed a limited role labeling. These categories include Gene names, tissues, species, differences in 

structure/function of alternative transcripts, expression-specificity, number of isoforms and mechanisms 
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(Table 4.31). These categories were found associated with specific verbs. For example, phrases describing 

mechanisms were frequently associated with verbs like splice, express, produce, utilize, isolate, encode, and 

lack etc. in the context of alternative transcript expression in tissues. Similarly, phrases describing 

experimental methods were frequently seen with verbs like detect, result, report, and observe, in the 

sentences describing TD. Additional verbs were contain, lack, bind, show, and identify etc.  

Gene and tissue names were tagged with entity taggers and all others categories were tagged using 

rules based on the PAS. The values for recall and precision for tagging of semantic categories were highly 

satisfactory (Table 4.31). The performance at the tagging boundaries was not evaluated in this study. 

 

4.4. – Data mining of LSAT 
4.4.1. - Proposing new annotations in sequence databases 

There are 8133 abstracts in MEDLINE 2003 release with the MeSH term alternative splicing assigned to 

them by the annotators at the National Library of Medicine. During the information extraction step, 1536 

additional abstracts describing AS events but lacking the MeSH term annotation were identified. This 

corresponds to a 19% increase in annotation. Moreover, new MeSH terms alternative promoters and 

alternative polyadenylation were proposed, for which 874 and 219 instances were extracted.  

The results from the extraction step were used to provide new annotations for alternative splicing, 

in terms of Ensembl genes for human, mouse and rat (see Methods). The putative annotation increase 

observed was 20%, 52%, and 105% for human, mouse, and rat genomes, respectively (Figure 3.43). The 

annotation increase for the human genes was relatively little compared to that for the rat genes. Even more 

annotations could be obtained by manually curating extracted events that could not be automatically 

mapped to a sequence database entry. For instance, an additional 190 genes exhibiting tissue-specific 

splicing were mapped to entries in the sequence database when searching for genes exhibiting tissue-

specific splicing.  

 

4.4.2. - Quantification of the different mechanisms that lead to transcript 

diversity 
A vast majority of the vertebrate multi-exon genes undergo alternative splicing (Johnson et al., 

2003). Moreover, different promoters may control the transcription of different mRNA isoforms, which 

may result in directed 5’ exon inclusion/exclusion, and alternative polyadenylation signals can control the 

tissue specificity of alternative 3’ exons. While examples of synergy between these mechanisms are known, 

the extent of it is currently being explored. Differential promoter usage was found co-mentioned with 

alternative splicing in 14% of abstracts. A total of 19% of the abstracts providing information about 

alternative first exon usage also mentioned usage of different promoters. A total 17% of abstracts 

describing alternative polyadenylation also mention AS.   
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The extent to which various mechanisms are utilized for increasing transcript diversity may vary 

across different anatomical systems. To study this, all vertebrate tissue information was mapped to 

anatomical systems using the MeSH anatomy terms and the number of non-redundant events extracted for 

each mechanism in each system was counted (Figure 4.41; top panel). 

 

Figure 4.41 - Preference for the utilization of TD generating mechanisms across anatomical systems: 

Non-redundant instances of alternative splicing, differential promoter usage and alternative polyadenylation 

are plotted against anatomical systems in which expression was found. The color of each square in the top 

panel signifies the ratio of number of events detected for the system to the highest number of events within 

the row. Total number of non-redundant instances for each mechanism is on the left. The bottom panel 

shows the negative logarithm of p-values (see Methods for details). The anatomical systems are, A: cardio 

vascular system (sys); B: Cells; C: Connective tissues; D: Digestive sys; E: Fetal/embryonic structures; F: 

Endocrine sys; G: Exocrine glands; H: Genetalia; I: Immune sys; J: Integumentary sys; K: Musculoskeletal 

sys; L: Nervous sys; M: Respiratory sys; N: Sense regions; O: Urinal sys. 

 

The figure shows that alternative splicing is utilized equally in most organs except in the nervous 

system where AS is significantly over-represented (Figure 4.41; bottom panel). Similarly, the figure shows 

a significant over-representation of differential promoter usage in the connective tissues and to a lesser 

extent in the digestive system and in the genitalia. 

The knowledge about alternative promoter usage with gene names and tissues extracted in this 

study is the largest such collection available at present. It would provide a reliable dataset for the 

development of computational methods for predicting tissue-specific promoter usage. 
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4.4.3. - Identifying tissue specific differences in the extent of alternative 

splicing 
With a large collection of alternative splicing events, tissue-specific differences of AS should 

become visible; AS has been shown to play an important role in creating functional specialization of tissues 

and development stages (Grabowski and Black, 2001; Yeo et al., 2004). But only a small number of 

instances of tissue-specific splicing are listed in the current AS databases (Thanaraj et al., 2004; Xu et al., 

2002). Entries in LSAT containing the field ‘specificity’ were checked for information about specificity in 

AS and 959 such events were identified. It represented 675 AS events for pairs of tissues and 284 events 

where only one tissue was reported. The results contained 400 non-redundant events for 183 human genes. 

Moreover, a further 190 genes (not included above) from various species were mapped to Swissprot 

identifiers during the manual curation. 

 

 

Figure 4.42 - Tissue specificity in AS: The distribution of differential/specific splicing event across 

different anatomical systems is shown. The instances were obtained from literature mining (left panel) and 

analysis of EST data ((Xu et al., 2002), right panel). Each square is colored according to the ratio between 

the corresponding count and the highest count within the panel. Names for systems denoted by alphabets 

A-O can be found in the legend of figure 4.41. P represents unique transcript. 
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To study the extent of tissue-specific AS, tissue/organs were mapped to respective systems as 

described in the previous section and plotted (Figure 4.42; left panel). The nervous system, genitalia, 

immune, digestive and musculo-skeletal systems showed extensive amount of tissue specificity in inter- 

and intra-systemic alternative splicing. These systems also showed expression of the unique AS transcripts 

with the nervous system showing the highest amount of unique transcripts. These tissue specific patterns of 

expression extracted from literature strongly overlap with the 667 tissue-specific AS events derived from 

the analysis of the EST data (Xu et al., 2002) for 454 human genes across 46 tissues (Figure 4.42; right 

panel). 

 

4.4.4. - Assigning function to the transcripts generated by computational 

analysis 
As mentioned before, the mechanism responsible for multiple transcripts is sometimes speculated 

with a limited number of experiments and the corresponding transcripts are not deposited in the Genbank. 

For example, work by Pisarra et al., (Pisarra et al., 2000) on human Dopachrome tautomerase describes 

two transcripts expressed in melanocytes and melanomas with a ‘different carboxyl-terminus’ concluding 

that ‘dopachrome tautomerase can yield different isoforms by alternative poly(A) site usage or by 

alternative splicing’ (Figure 4.43).  

On the other hand, various methods including those based on aligning EST and other sequence 

data to genomic regions are currently used for detecting AS on a large scale. The function of the isoforms 

thus generated is largely unknown (Lee, 2003) and these transcripts are poorly annotated in sequence 

databases.  

Using the heaviest bundling algorithm (Lee, 2003) with genomic sequence data from Ensembl 

(Birney et al., 2004), and transcript data from UniGene clusters (Wheeler et al., 2004) for the gene, two 

transcript isoforms were generated (Figure 4.43; bottom). These isoforms resembled those described in the 

paper and alternative splicing was detected at the 3’-region. Hence, the usage of large-scale methods may 

provide detailed information about the underlying event and text mining can add functional annotations to 

the observed transcript isoforms. 
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Figure 4.43 - Assignment of function using knowledge in LSAT: Figure (top) shows an LSAT entry that 

has very little functional annotations in sequence databases. Text extraction rules were successful in 

identifying gene name, tissue, and event mechanism for Dopachrome tautomerase gene. Multiple 

transcripts of the gene that resulted from utilizing alternative 3’ splice site and polyadenylation signal 

(bottom) could be generated using SPLICE-POA (Lee, 2003). Pink squares denote the exons, black lines 

describe constitutive splice sites and blue lines show alternative splice sites. Black arrows show the 

different proteins generated due to AS. 
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V. - Discussion 
 

IE and literature mining from biomedical texts was a nascent field when I started the work presented in this 

thesis. The number of published research articles in the field is increasing rapidly due to its potential usage 

in aiding knowledge discovery and assisting in analysis of data coming from high-throughput methods 

(Perez-Iratxeta et al., 2002; Raychaudhuri et al., 2002). The results described in this thesis flow from 

general analysis of the biomedical corpus to the design of a specific application and statistical data analysis. 

The work tackles four important tasks for applicability of IE in biomedical texts.  

The first task was to check if the article full-text contains more information than abstracts of the 

article. It also involved the study of organization of information in the different sections such that IE 

attempts could be practical on the article full-text. It was found that information is heterogeneously 

distributed across the articles. Abstracts are the best repository of biological information followed by 

Introduction and Discussion sections.  

The second task was to identify a suitable approach to overcome the problem of existence of 

multiple syntactic patterns in biomedical texts in order to build a general purpose IE method. Providing a 

suitable resource for general purpose IE is a non-trivial task. PAS, which provides semantic extraction 

frames, was found to be a naturally suitable solution for overcoming the problem of syntactic patterns in 

biomedical texts. Representative sentences from abstracts and full-text articles were analysed manually and 

with the help of linguistic parser. The concept of PAS was borrowed from the NLP in the general domain 

and a database of PAS (PASBio) tailored to biomedical texts was generated.  

Thus, the third task was to generate a database of transcript diversity (LSAT) semi-automatically 

using a two-step procedure involving sentence classification and IE (semantic labeling) steps. A solution to 

the problem of syntactic patterns was also sought by machine learning methods. Various machine learning 

methods including the SVM were used for the sentence classification task for identifying sentences that 

describe the generation of alternative transcript isoforms in different tissues across species. A limited 

amount of semantic role labelling was carried out to provide sentences constituents with appropriate tags 

and prepare a database of experimentally verified alternative transcripts.  

The last task was to apply the knowledge stored in LSAT for providing automatic annotations to 

abstracts in MEDLINE and sequence entries in various databases. Statistical data analysis and comparison 

of the knowledge in LSAT with data from high-throughput methods provided novel insights on synergy 

and preference of various mechanisms that generate transcript diversity.       
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5.1. - Analysis of full-text articles for IE 
 

5.1.1. - Choice of the data-set 
There is a clear need for utilizing the full text scientific articles for IE in biology and the primary 

requirements for doing it are already present. Modern computers are better suited for faster computation 

and storage. Regarding the source of data, electronic versions of the full-text articles are now more a rule 

than the exception, with initiatives towards the construction of large public repositories of such information 

like PubMed Central (Roberts, 2001).  

Information carried by the different sections of a paper, especially between the Abstract and the 

rest was compared to find differences in section contents. For that, a set of full text articles with a regular 

section structure, namely having a defined A, I, M, R, and D sections were used as the source for the 

analysis. Another requirement was that of a certain homogeneity of style across the articles (for example, a 

similar length of the Methods section) and, since there was a great interest in the field of data mining on the 

detection of gene names at the time of the work, the article contents should be related to Genetics. Thus, 

104 articles published in Nature Genetics, that comply with the AIMRD structure were chosen.  

 

5.1.2. - The distribution of information is heterogeneous 
The results showed that the distribution of information in full text articles is heterogeneous and 

that there is a certain correspondence of article sections with different kinds and densities of relevant data. 

The Abstracts were the best repository from the point of view of having many keywords in a short space, 

justifying previous information extraction approaches. The lack of large repositories of full text articles in 

contrast to the current 12 million of references in the MEDLINE database is another advantage of the 

Abstract approach. 

However, there is much more relevant information (at least in a ratio of 1:4 regarding gene names, 

anatomical terms, organism names, etc.) in the rest of the article. Moreover, the information is structured 

enough to get important numbers of relevant keywords, but that for certain words (such as gene names), 

caution has to be taken regarding the context of the word. 

Hence, mining of full text articles should be approached with different strategies for different 

sections. Beyond the Abstract, the Introduction is the best place to look for protein and gene names (and 

interactions) since it would likely describe the state of the art of the subject under discussion. The 

Discussion section, that interprets the results and puts them in context with the current knowledge, looks 

like the third best place for mining such information, with Methods probably as the worst place. The 

Results section can be problematic given its mixed nature between Methods and the rest. 
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5.1.3. - Introduction and Discussion are also information rich 
Regarding other subjects, such as keywords about biological phenomena, and biological objects 

(species, tissues, diseases, etc.), again the Abstract and then the Introduction section look like the best 

sections to mine regarding the frequency of such keywords, but Results and especially Discussion seem 

better from a quantitative point of view. The Methods section is clearly appropriate for looking for 

technical data, measurements, and chemicals. In respect to chemicals, again, their context can be 

completely different in this section compared to the rest.  

 

5.1.4. - Context matters 
In brief, extraction of biological information from full text looks promising, but context must be 

considered. Part of this context is given by the situation of the text under analysis within the article. 

Therefore, tuning the extraction of information to the section is probably a good strategy, and for particular 

tasks some sections should be avoided.  

This work also suggests a simplistic annotation that constitutes tagging a fragment of an article as 

belonging to a characteristic section. But further tagging using markup codes in XML style (St. Laurent, 

2000) identifying biological objects and concepts (under development; see for example (Ettinger, 2002) or 

the GENIA project (http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/)) could ultimately make text mining 

relatively simple. One suggestion is to develop advanced interfaces for writers of molecular biology articles 

that would perform XML based tagging of important concepts which could be used to link a gene name 

with a unique and stable link to any of the existing gene sequence databases. For this to happen, the 

collaboration between both scientists and publishers will be very important. 

 

5.1.5. - Related work on analysis of full-text articles 
This work was first to analyze the suitability and information contents of various sections in the 

full-text articles for IE. A year after this work was published; there was another report on the analysis of 

full-text articles using keywords (Schuemie et al., 2004). The work utilizing a corpus of ~4000 full-text 

articles and an expanded keyword system obtained very similar results. Schuemie and coworkers also 

concluded that information density is highest in the abstracts, but that the information coverage in full texts 

is much greater than in abstracts. Their analysis of five standard sections (AIMRD) of articles showed that 

the highest information coverage is located in the results section. Still, 30-40% of the information 

mentioned in each section is unique to that section. Only 30% of the gene symbols in the abstract were 

found to be accompanied by their corresponding names, and a further 8% of the gene names were found in 

the full text. In the full text, only 18% of the gene symbols are accompanied by their gene names.     
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5.2. - Exploitation of sentence semantics for accurate event extraction 
The keyword based analysis described above and other similar analysis reported elsewhere provide the idea 

of the contents of the text. However, they don’t provide the exact relationships between entities as 

described in the literature for populating databases with structured fields. Descriptions of relationships and 

entire events must be extracted from the relevant sentences by appropriate patterns (templates) on the 

surface text around event-depicting verbs using systems such as part of speech taggers, regular expression 

matches and shallow parsers (Saric et al., 2004; Wattarujeekrit et al., 2004). As shown in the Introduction 

section, IE methods in biomedical texts also face the problems posed by multiple syntactic patterns like all 

other domains of written language. Moreover, information extraction from complex sentence in biomedical 

texts requires deeper knowledge of sentence semantics.  

By mapping the surface texts to semantic frames around a predicate, one may get a PAS frame for 

that predicate. PAS is a knowledge rich and useful intermediate structure for extraction of constituents of 

an event or relationships. Examples of use of full parsers and corpus based machine learning of predicate 

argument structures are now commonplace in the IE literature (Pradhan et al., 2004; Surdeanu et al., 2003; 

Tateisi et al., 2004). These approaches are helpful in overcoming problems posed by multiple syntactic 

patterns.  

 

5.2.1. - Specialization of domains affects various text processing tools 
The sentences found in biomedical texts are complex and technical in nature. The word usage 

patterns are different in biomedical texts compared to general English. For example, there are gene names 

called Not or That. Gene names like A6 or suppressor of Hairless common in biomedical texts. Hence, 

various tools including the part of speech taggers, full parsers and PAS frames which are trained using a 

corpus of general English, have problems processing the biomedical text correctly. For example, Saric and 

co-workers improved the tagging performance of the TreeTagger (which is used in this thesis work) by 

more than 4% by re-training it on GENIA corpus (Saric et al., 2004).  

 Domain specific differences in verb semantics and argument usage was also noticed while 

defining PAS for interesting verbs from biomedical texts. Thus, PAS of many verbs in biomedical domain 

contain more (e.g., mutate, initiate) or less (e.g., block) arguments compared to that required for their PAS 

in general domain. Moreover, verbs like express occur with different semantics in biomedical texts 

compared to general English and others like transform require more than one PAS frames depending upon 

the context in which they occur. Thus, analysis and mining of biomedical texts would require tools which 

are trained using corpus of biomedical texts.    
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5.2.2. – PASBio: A database of predicate argument structures for molecular 

biology 
As mentioned above differences in domain affect the verb semantics and argument structures. 

Hence, event extraction from biomedical texts would require a specialized database of PAS. PASBio was 

developed to fulfill this requirement. PASBio contain PAS structures for 30 verbs at this stage. In 

generating PASBio, verbs were chosen based on their frequency in the articles and also on their importance 

in a number of major event types such as gene expression, molecular interactions and signal transduction. 

At least one PAS frame per verb was defined, guided by WordNet senses (Miller, 1990).  

In order to generate a PAS frame, diverse sentences containing a common predicate were analyzed 

with both the biological and the linguistic perspectives. The arguments constantly accompanying the 

predicate and important for completing the meaning of the sentence were proposed as core arguments. The 

core arguments were given numbers from 0 to n. Arg0 was reserved for the agent of the event and ArgR for 

the result of the event denoted by the predicate. As a rule ArgR denotes the argument describing the result 

of the event and multiple ArgX play distinct roles during the event. This condition is depicted by a formula 

like “verb event = (Arg X + verb + Arg X) + ArgR”. Empirically, ArgR is used with transitive verbs like 

skip, delete, mutate related to abnormal biological phenomenon. Apart from the role of agent which was 

reserved for gene/gene products, other roles in common with the general domain such as instrument, 

source, and location were also frequent in biomedical texts. However, predicate usage and their argument 

sets differ considerably between biomedical and general English. 

Construction of PAS frames by expert analysis is a time-consuming process. It is possible to 

approach the task of PAS definition from a machine learning approach utilizing information from the 

parser, and also to follow a path of hand-built mapping rules for assisting in semantic role assignments. 

However, a full parser was used only to assist grammatical and linguistic aspects in this work.   

 

5.2.3. - Utilization of PASBio 
Each PAS frame in PASBio provides a set of semantic relationships between arguments 

participating in an event and a verb conveying the event. Domain-specific PAS frame definitions have 

valuable uses in several applications. Although, the main focus while developing PASBio was reliable 

event extraction in the molecular biology domain, any information processing application that requires 

semantic understanding of a sentence will be able to take advantage of this knowledge. For example, 

machine translation (MT) that requires encoding a surface sentence of a source language into a language 

independent logical form of clause meaning, and then generating from this logical representation a surface 

sentence in a target language. PAS would provide such a logical representation in MT (Hajic et al., 2004; 

Han et al., 2000). In the case of a text summarization application, PAS frames could be employed as the 

basic unit of a discourse representation, before being summarized (Marcu, 2000). PASBio is available 
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online for the wider research community in the molecular biology domain for exploitation in such 

applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 - PASBio – a database of predicate argument structures. The database was constructed for 

event extraction in biomedical texts and is available at http://research.nii.ac.jp/~collier/projects/PASBio 

 

Role of PAS in a complete extraction system 
With respect to a complete event extraction system in molecular biology, PASBio takes on the 

role of a reference source providing annotated training examples (corpus) for machine learning. The 

utilization of a PAS frame involves four stages: (1) construction of a semantic lexicon; (2) annotation of 

frame elements in sentences using the knowledge in PASBio; (3) automatically transforming sentences 

from surface forms to logical forms; (4) extracting the semantic relationships from the logical form and 

integration of the resultant interpretation within the event extraction framework. The work of Surdeanu et 

al. that utilized PAS defined for the newswire domain to extract market change events provide an excellent 

description of an IE system that makes use of a corpus annotated with PAS elements (Surdeanu et al., 

2003).        
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5.2.4. - Related work on Information Extraction from biomedical texts 
There are many initiatives for event extraction from the biomedical literature. Most of them utilize 

MEDLINE abstracts. Most of these approaches can be summarized into two sets. The first set of methods 

use regular expressions and rely on syntactic patterns. These methods may use statistical models of the 

surface words (Donaldson et al., 2003; Marcotte et al., 2001), rules of the sentence elements’ precedence 

order (Blaschke et al., 1999), shallow knowledge like part of speech tags, syntactic roles of constituents 

(Ono et al., 2001; Pustejovsky et al., 2002), gene/protein name dictionaries and domain knowledge (e.g. a 

template slots for the particular event) about the events they intend to extract (Rindflesch et al., 2000; 

Sekimizu et al., 1998). A template used in this research group consists of only a simple set of slots for a 

simple predicate (i.e. the predicate relating only two arguments: subject and object) and only a shallow 

notion of the predicate-argument structure has been utilized (i.e. considering one argument as subject and 

another as object, but not considering semantic roles).  

Methods in the second set, take into account a large number of linguistic and deeper semantic 

aspects. For example, the MedScan system (Novichkova et al., 2003) is composed of two components: an 

NLP engine deducing the semantic structure of a sentence, and a configurable IE component to validate and 

interpret results produced by the NLP engine, in order to achieve a flexible and efficient IE system. 

However, like many other proposed systems the semantic interpretation module of MedScan is still under 

development and not precisely specified. Recently, another research group (Tateisi et al., 2004) reported 

the aim of annotating a biological corpus with semantic knowledge in the form of PAS. This work is also at 

an early stage. However, these examples show the importance of predicate-argument frames and the 

semantics lying therein as a key knowledge for IE in the molecular biology domain. Thus, the NLP 

approaches, whether a deep notion of predicate-argument relations is taken (Novichkova et al., 2003) or a 

shallow notion (Rindflesch et al., 2000; Sekimizu et al., 1998), do require a reference resource of PAS 

frame for each predicate. In this respect, PASBio’s description of PAS frame for each predicate will be a 

useful complement to other approaches.  

 

5.3. – Generating a database semi-automatically with a two-step 

procedure 
5.3.1. – Description of LSAT 
LSAT (Literature Support for Alternative Transcripts) was generated semi-automatically using a 

two-step procedure (Figure 5.31). The first step was retrieving all the sentences describing TD from 

MEDLINE (sentence classification) and the second step was to extract the information (role labeling) from 

the sentences provided by the classifier.  

Since LSAT was generated from MEDLINE, information associated with LSAT entries is 

experimentally verified. Entries in LSAT are divided in three parts (Figure 4.32). The first part contains 

literature data including title and abstract text of identified MEDLINE entry. The second part contains links 
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to various sequence databases like Swiss-Prot, Refseq, GenBank and Ensembl. The third part contains 

information including gene names, species, experimental methods, and mechanisms generating alternative 

transcripts, extracted from the sentences identified by the SVM classifier.  

In total LSAT contain 9,503 instances of event mechanisms from as many abstracts and 5,028 

instances of tissues with associated gene names. There are 3,063, 874, and 207 non-redundant instances of 

AS, differential promoter usage (DP), and AP associated with genes and tissues extracted by entity taggers. 

The information about alternative promoter usage linked with specific gene names and tissues extracted in 

this study is the largest such collection available at present. It would provide a reliable dataset for the 

development of computational methods to predict tissue-specific promoter usage. Moreover, LSAT can be 

searched using identifiers from Swissprot, Refseq, Genbank, and Ensembl, apart from gene names, species 

and event mechanisms. LSAT data are also available free for download.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31 – A database of transcript diversity: Snapshot of LSAT homepage at 

http://www.bork.embl.de/LSAT/. 
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5.3.2. - Retrieving event describing sentences using text categorization 

methods 

Why sentence classification should be attempted 
As discussed above, biomedical texts utilize domain specific predicates and argument sets of other 

commonly used predicates are often changed. Thus, attempts for the assignment of the predicate argument 

relationships in biomedical tools using standard NLP tools suffer from low values of precision and recall 

(Wattarujeekrit et al., 2004). Efficient and accurate parsing of biomedical texts is not within the reach of 

current parsers (Shatkay and Feldman, 2003). Standard methods are computationally expensive to use and 

are trained on English texts from the newswire domain. Thus, full parsing attempts could be impractical 

when applied to a large database like MEDLINE. Hence, any practical event extraction task should be 

preceded by the identification of the event-containing sentences. This binary classification step would 

constrain the number of predicates, giving a better idea of the semantic roles of their arguments and reduce 

the computational demands. The classification would also help prioritising the predicates for the predicate 

argument analysis in these early days of event extraction for generating event-specific databases. Moreover, 

it would also help the consequent IE step to achieve higher precision. 

 

Why SVM are superior for the sentence classification task 
SVM followed by the maximum entropy classifier proved to be better than other sentence 

classification methods using bag of words as the input feature set. This feature set was the simplest and 

didn’t contain any derived (e.g. synonyms) features. Hence, the method inherently good at feature selection 

would outperform the others in this set up. SVM benefit from this scenario as they learn classification using 

boundary examples (support vectors) and perform classification irrespective of the total number of input 

features. The use of a large training set constructed by hand was also beneficial for statistical pattern 

learning by the SVM. The SVM with a RBF kernel outperformed SVM with linear, sigmoid and 

polynomial kernel functions. The SVM with RBF kernel maps input features to infinite dimensional 

hyperspace thereby allowing the separation of positive examples from the negatives with maximum margin 

and results in better classification. Similarly, maximum entropy classifier can utilize the presence of 

frequently occurring phrases like ‘alternative splicing’ or ‘multiple mRNA transcripts’ for learning 

classification and therefore give better performance than naïve Bayes classifier (and other methods) where 

the underlying assumption about the word independence is disadvantageous (see Appendix). Such a trend 

in classification performance has been reported for the text categorization task (Dumais et al., 1998; 

Yiming Yang, 1999).       
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SVM classifiers should be utilized for extracting biological information 
For the SVM with the RBF kernel, values of gamma=1.5 and C=10 led to the optimal 

classification performance. When the trained classifier was applied to all sentences in MEDLINE, it 

achieved a recall of 74.33% and a precision of 66.02% (F-measure of 70%). The average value of recall 

decreased to 61%, when the benchmark was carried out using Swiss-Prot annotations for the genomes of 

human, mouse, rat and Drosophila.  

Thus, the SVM classifier was able to learn multiple patterns present in the training set while 

handling a relatively large amount of features and provided good values for precision and recall. This 

generalization performance makes SVM an attractive choice for extracting biological events from text data. 

Moreover, this performance was obtained over a very large repository of biomedical texts and there was no 

need to define any rules or pre-selecting a subset of MEDLINE. Thus, this classifier could also be utilized 

for mining of mRNA TD from the full text of articles 

 

5.3.3. - Rule-based tagging for IE would help database curation 
As discussed before, multiple syntactic patterns in the extracted sentences can be summarized into 

semantic patterns using PAS analysis (Wattarujeekrit et al., 2004). Hence, extracted sentences were 

analyzed and eight frequently present categories were identified with accompanying verbs. Frequent 

presence of the categories identified from the sentences is indicative of their biological importance. Indeed, 

manual annotation of information like gene name, species, tissue, expression-specificity, alternative exon 

etc. could be found in the Alternative exon database at the European Bioinformatics Institute (Thanaraj et 

al., 2004). The results of semantic role labelling step are deposited in the Alternative exon database.  

Genes and tissues were tagged with named entity taggers and all others categories using rules 

based on PAS. Some of the verbs identified from sentences were not present in PASBio and hence they 

were analysed for PAS.  The values of precision and recall of the IE step is highly satisfactory, however, it 

should be noted that accuracy in finding tag boundaries were not considered. Also, the recall is good for all 

categories, but not all eight categories are equally represented in the sentences. 

It should be noted that not all extracted sentences provide all types of information. For example, 

gene names are present in ~70% of extracted sentences. On the other hand information about tissue-

specificity was found only in 5% of the sentences, reflecting relatively fewer known examples in the 

literature (Table 5). However, in many cases, more than one sentence per abstract was extracted, containing 

information to complete the event description. Also, we have retained the identity (PMID and sentence 

number in the abstract) of the extracted sentences. Thus, missing information (e.g., gene name) can be 

obtained from neighbouring sentences using NLP techniques like discourse context and reference 

resolution, using MeSH terms associated with the abstracts or by searching for literature associated with 

(gene based) entries in sequence databases like Swiss-Prot (Bairoch and Apweiler, 2000), RefSeq (Pruitt 

and Maglott, 2001) or GenBank (Benson et al., 2004). 
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5.3.4. - Rule based versus semantic role labeling using machine learning  
Event extraction has been carried out traditionally by writing rules for filling pre-defined 

templates based on syntactic patterns exhibited by event-containing sentences (Hoffmann et al., 2005). 

However, researchers in general domain as well as in biomedical NLP are moving towards use of predicate 

argument frames (Daraselia et al., 2004; Gildea and Jurafsky, 2002; Novichkova et al., 2003; Surdeanu et 

al., 2003; Tateisi et al., 2004). Please see the discussion above on event extraction from biomedical texts 

and utilization of PASBio for the same (Wattarujeekrit et al., 2004). The work of Surdeanu et al. and 

Pradhan et al discusses use of PAS based role tagging/labelling using machine learning (Pradhan et al., 

2004; Surdeanu et al., 2003).  

Machine learning of semantic role labelling is gaining importance and many community wide 

efforts are organized for general English (e.g. CoNLL-2005 task defined at 

http://www.lsi.upc.edu/~srlconll). As noted before, domain-specific corpus is required for text-processing 

tasks in biomedical texts. Thus, the limiting step for the learning role-labelling for the biomedical NLP is 

the availability of a comprehensive database of predicate argument structures and an annotated corpus. A  

database of predicates common in biological texts was prepared in this work and new predicates are 

regularly being added to it (Wattarujeekrit et al., 2004). Sentences identified by the SVM classifier and 

tagged with the IE step could be used as a learning corpus for semantic role labelling task for biomedical 

texts. In other words, the task of extracting information including gene names, species, experimental 

methods, mechanism could be seen as a machine learning task of mapping surface text of the sentence to its 

logical form using predicate frames for accurate tagging of semantic roles (Pradhan et al., 2004; Surdeanu 

et al., 2003).  

 

5.3.5. - Related work on relationship/event extraction 
Craven et al developed systems to distinguish fact-bearing sentences from “uninteresting” 

sentences for identifying protein subcellular localization and gene-disorder association. Their naïve Bayes 

classifier that doesn’t use grammatical rules achieved a precision of 77% and a recall of 30%. The classifier 

that used grammatical rules and parsing of sentences achieved a higher precision (92%) but a lower recall 

(21%).  An important result of these experiments is the actual comparison of classifiers to a baseline 

method, which uses co-occurrence alone. The latter method decides that a sentence reports a “subcellular 

localization” fact if both a protein name and a localization word occur in it. This simple method, which is 

currently most popular in the context of literature mining in Bioinformatics, reaches a much lower 

precision than the classifiers (about 35% precision at recall 30% and 45% precision at recall 21%). The co-

occurrence based method can reach a higher level of recall (~70%) without losing much in precision 

(~40%). However, at this recall level, a naïve Bayes classifier with a noisy ‘OR’ combination still reaches a 

somewhat higher level of precision (~45-50%). The study suggests that classifiers at the sentence level 

have the potential to improve the precision of IE, in the biomedical context, over co-occurrence-based 

methods. An SVM classifier with the RBF kernel was also used by curators of BIND for their Pre-BIND 
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and Textomy system (Donaldson et al., 2003). They combined information retrieval with information 

extraction to assist in recovering protein-protein interactions and found interaction information in 60% of 

the extracted abstracts. Saric and co-workers extracted gene regulatory network from abstracts related to 

baker’s yeast with an accuracy of 83-90% without providing any estimated for recall (Saric et al., 2004).  

 

5.4. - Analysis and integration of text-mining data to present knowledge 
5.4.1. – Automated MeSH term assignments to Abstracts 
More than 13,000 instances of event mechanisms and ~16,000 instances of gene names were 

present in the sentences extracted using the SVM classifier and these were stored in LSAT. Utilizing the 

knowledge in LSAT resulted in 19% increase in MeSH term annotation seen while comparing the tagged 

events to annotations provided by the annotators at NLM. This increase in MeSH term annotations it self 

justifies the need of IE approaches. Abstracts were also assigned new keywords (MeSH terms) of 

alternative promoters and alternative polyadenylation. 

 

5.4.2 - Function annotation using text-mining 
The putative increase in gene annotation was 20%, 52%, and 105% for genomes of human, mouse, 

and rat, respectively. These results perhaps reflect the extent of manual curation efforts that are underway 

for the curation of different genomes. The annotation increase for human genes was relatively little 

compared to that for the rat genes because a total 3438 genes are already annotated in Swissprot and 

RefSeq for AS in human, whereas only 342 genes are annotated for AS in rat. An additional 190 genes 

were mapped to swissprot. Also, functional assignments were provided for de-novo generated transcripts. 

Hence, the increase in the annotation reflects the usefulness of the current approach and emphasizes the 

need for automated methods to speed up the process of database curation.   

 

5.4.3. - Transcript diversity generating mechanisms, synergy and preference  
The synergy between different TD-generating mechanisms was explored using the knowledge 

stored in LSAT. The results indicate that 14% of abstracts mentioning differential promoter usage also 

mentioned AS and for alternative polyadenylation the co-mentioning with AS was 18%. These numbers 

may be the lower bound of the mechanism synergies as we are just entering the high-throughput era.  

Text-mining results showed an over-representation of alternative splicing events in the nervous 

system. This results are inline with many EST based studies (Xu et al., 2002; Yeo et al., 2004) that report 

highest number of AS in the nervous system, as did earlier experimental studies (Mirnics and Pevsner, 

2004). EST-based studies (Yeo et al., 2004) also suggested that genes in liver (digestive system) and testis 

(genitalia) show distinct pattern of splicing with alternative exons. Text-mining results indicate that these 

transcripts may show these different patterns of splicing in combination with different promoter regions. 

This conclusion seems plausible as alternative splicing of first exons is influenced by alternative promoter 
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regions in at least 19% of cases (results in section above; (Zavolan et al., 2003)) and should be explored 

further. 
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VI. Conclusions 
 

1. - There is a clear need for utilizing full-text articles for IE in biology. IE from the full-text articles is 

required as the distribution of information in full text articles is heterogeneous and there is certain 

correspondence of article sections with different kind and density of relevant data. 

 

2. - Abstracts of biomedical scientific articles are the best repository from the point of view of keyword 

density and availability, justifying IE approaches where only Abstracts are utilized. However, there is much 

more relevant information in the rest of the article, specifically in Introduction and Discussion sections. 

Moreover, the information is structured enough to get large numbers of relevant keywords 

 

3. – The analysis of sentences from abstracts and full-text articles of biomedical texts demonstrates a clear 

need for the utilization of semantic knowledge for accurate information extraction. PAS frames provide a 

semantic extraction template for an event depicting predicate. Also, the semantic knowledge residing in 

PAS frames will help the extraction process to overcome the problem of multiple syntactic patterns.  

 

4. - Predicate usage in biomedical texts is domain specific and hence a domain-specific PAS resource is 

required for accurate IE. Utilization of PAS will also allow building of a general purpose IE system for 

biomedical texts. The PASBio database generated as a part of this work promises to serve this and other 

functions (availability: http://research.nii.ac.jp/~collier/projects/PASBio/).    

 

5. - Generation and regulation of alternative transcripts is an important event for functional diversity and 

evolution of eukaryotes. A database of alternative transcripts (LSAT) was generated semi-automatically 

using a composite procedure containing sentence identification and information extraction steps. LSAT is 

available at http://www.bork.embl-heidelberg.de/LSAT/.        

 

6. - Support vector machines followed by the maximum entropy classifier outperformed other sentence 

classification methods. SVM with radial basis kernel function generalized well; they are the best classifiers 

of the text data. Machine learning of sentence classification also allowed circumventing the problem of 

multiple syntactic patterns. Both, the sentence classification and the information extraction steps achieved a 

good F-measure in the benchmarking process. 

 

7. – LSAT is knowledge rich and knowledge residing in LSAT could be utilized for automated assignment 

of the MeSH terms, and function annotations to gene entries in sequence databases and de novo generated 

alternative transcripts.  
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8. – The data-mining of LSAT also allowed hypothesis testing. The results of data mining and comparison 

to EST data suggested that alternative splicing may be the preferred mechanism for generating alternative 

transcripts in the nervous system. Thus, text-mining not only assisted in analysing the data from other 

sources but also acted as a stand-alone data source. 
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VII. Supplementary Material 
Appendix A 

1. Glossary of Terms 

Natural language processing 

Natural language processing is concerned with all aspects and stages of converting spoken, handwritten or 

printed text from raw signal to information that can be used by either humans or automated agents. In the 

context of Bioinformatics, we are concerned only with the printed text that is already stored in machine 

accessible format and therefore concentrate on common text processing operations as used by typical text 

mining systems. These include the tokenization and zoning tasks, part of speech tagging and (shallow) 

parsing In this section I introduce general techniques from natural language processing and then proceed to 

more specific area of information extraction.  

Tokenization  

The first step in text analysis is the process of breaking the text up into its constituent units—or tokens. 

Tokens may vary in granularity depending on the particular application. Consequently, tokenization can 

occur at a number of different levels: the text could be broken up into chapters, sections, paragraph, words, 

syllables, or phonemes. The most common form of tokenization in mining systems is the fragmentation of 

text into words and sentences. The main challenge of fragmentation at the sentence boundaries is 

distinguishing between a period that signals an end of sentence and a period that is part of a previous token 

like the shorthand Mr., Dr., etc. 

Part of speech tagging.  

Part-of-speech tags are a set of word-categories based on the role that words may play in the sentence in 

which they appear. Part of Speech (PoS) tagging is the annotation of words with the appropriate PoS tags, 

based on their context within the sentence. PoS tags convey information about the semantic content of a 

word. Nouns usually denote tangible and untangible entities while propositions express relationships 

between entities. While sets of tags may vary most part-of-speech tag sets make use of same basic 

categories. The most common tags include: Article, Noun, Verb, Adjective, Preposition, Number and 

Proper Noun.  

Several approaches exist to PoS tagging. The methodologies used in training the taggers include decision 

trees; hidden markov models (HMMs) or rule-based tagging. In order to estimate the model parameters the 

HMM tagger undergoes a training phase, using an annotated corpus such as the WSJ corpus in the Penn 

Tree Bank. Using tri-gram model, HMM-based taggers have achieved 94-96% accuracy in held out tests. 
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Other taggers may use decision trees, a searching based approach for learning and performing POS tagging. 

Rule based approaches rely on rules that use contextual information to assign tags to unknown or 

ambiguous words. These rules are also known as context frame rules. In addition to contextual information, 

many rule based taggers use morphological information to aid the disambiguation process. For example, if 

an ambiguous/unknown word ends with an ing suffix and it is preceded by a verb, it may be tagged as a 

verb. Another correct tagging of words can be obtained from orthography such as capitalization or 

punctuation. All approaches that are utilized for POS tagging may also be utilized for named entity tagging 

in biomedical texts.  

Parsing and shallow parsing.  

Parsing is the process of determining the complete syntactic structure of a sentence or a string of symbols 

in a language. A parser usually takes as its input a sequence of tokens that were extracted from the original 

text by a lexical analyser. The output from the parser is typically an abstract syntax tree, whose leafs 

correspond to the individual words (lexemes) in the text, and whose internal node represent syntactic 

structures identified by grammatical tags, such as Noun, Verb, Noun phrase, Verb phrase, etc. Efficient and 

accurate parsing of unrestricted text is not within reach of current techniques. Standard algorithms are too 

expensive to use on very large corpora and are not robust enough. 

A practical alternative is shallow parsing. This is a coarser process of breaking documents into non-

overlapping word sequences or phrases, such as syntactically related words are grouped together. Each 

phrase is then tagged by one of a set of predefined grammatical tags such as Noun Phrase, Verb Phrase, 

Prepositional phrase, Adverb Phrase, Conjugative Phrase, and List Marker. Shallow parsing has the benefit 

of both speed and robustness of processing, which comes at the cost of compromising the depth and fine-

granularity of the analysis. Shallow parsing is generally useful as pre-processing step, either for 

bootstrapping –extracting information from corpora for use by more sophisticated parsers—or for end-user 

application such as information extraction. Shallow parsing allows the identification of relationships 

between the object, the subject and any other spatial or temporal phrases within a sentence. 

Each of the NLP task described above and others including text categorization, named entity extraction 

could be learned from a suitable corpus labelled with appropriate labels. Support vector machines were 

compared to other text categorization methods and they are described below.  
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Appendix B 
2. Machine learning  

Machine learning draws on concepts and results from many fields, including statistics, artificial 

intelligence, philosophy, information theory, biology, cognitive science, computational complexity and 

control theory. Hence, there are different learning concepts and a variety of learning methods depending 

upon the exact learning task. Learning can be defined in many ways. Some of the common definitions are: 

 

• Learning denotes changes in a system that enables it to do the same task more efficiently the next 

time. – Herbert Simon 

• Learning is constructing or modifying representations of what is being experienced. – Ryszard 

Michalski 

• Learning is making useful changes in our minds. – Marvin Minsky. 

   

Machine learning of Well-posed problems 

A computer program is said to learn from experience E with respect to some class of Tasks T and 

performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.  

 

Unsupervised learning  

In unsupervised or self-organized learning there is no teacher to oversee the learning process. In other 

words, there is no specific example of the function to be learned by the method. Clustering is an 

unsupervised task. Clustering algorithms divide data into natural groups (clusters). Instances in the same 

cluster are similar to each other, they share certain properties.  

Supervised learning 

An essential ingredient of supervised learning is the availability of an external teacher. One may think of 

teacher as having knowledge of the environment that is represented by a set of input examples and their 

class labels. During the training session, when the learning method is presented an input vector, by the 

virtue of the inbuilt knowledge the teacher is able to provide the learning method with a desired or target 

response (usually a function) for that training vector. The learning parameters are adjusted under combine 

influence of the training vector and the training error. The training error can be defined as the difference 

between the actual response of the learning method and the desired response. Classification requires 

supervised learning i.e. training data has to specify what we are trying to learn (the classes). 
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Support Vector Machines:  

As mentioned before SVM is a learning algorithm for a linear classifier which tries to maximize the margin 

of confidence of the classification on the training data set (Joachims, 2001; Nello Cristiani, 2000; Vapnik, 

1999). SVM were developed by Vapnik et al. based on Structural Risk Minimization principle from 

statistical learning theory. The idea of structural risk minimization is to find a hypothesis h from a 

hypothesis space H for which one can guarantee the lowest of error Err(h) for a given training sample of n 

examples. SVM learn linear threshold functions of the type  
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 Each such linear threshold function corresponds to a hyperplane in feature space. The sign function 

returns a 1 for positive argument and -1 for a non-positive argument. This means that the side of 

the hyperplane on which an example lies determines how it is classified by 
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 Figure 7.21 - Classification with maximum margin:  The figure on the left shows how multiple 

hyperplanes could be defined for binary classification. SVM tries to define a hyperplane with maximum 

margin separating the training examples.  

 

The way SVM function can be explained as follows. Let us assume that the training data can be separated 

by at least one hyperplane . This means that there is a weight vector 'h 'wr and a threshold , so that all 

positive examples are on one side of the hyperplane while all negative examples lie on other side. This is 

equivalent to requiring 

'b

0][ '' >+⋅ bxwy ii
rr

 for each training example ),( ii yxr . In general, there can be 

multiple hyperplanes that separate the training data without error (figure X). From these separating 

hyperplanes the support vector machine chooses one with the largest margin δ, as shown by the hyperplane 

)( ∗xh r
 in the figure. The margin δ is the distance from the hyperplane to closest training examples. For 

each separable training set, there is only one hyperplane with maximum margin. The examples closest to 

the hyperplane are called support vectors (marked with circles in FigX). They have a distance of exactly δ.    
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A remarkable property of SVMs is that they can be transformed into non-linear learners. In principle, the 

approach used is as follows. The attribute vector ixr  are mapped into a high-dimensional feature space 'X  

using a non-linear mapping )( ixrΦ . The SVM then learns the maximum-margin classification rule in 

feature space 'X . Despite the fact that the classification rule is linear in 'X , it is non-linear when projected 

into the original input space. In general such a mapping )(xrΦ is inefficient to compute. But in practice it is 

sufficient to compute dot-products in the feature space, i.e. )( ixrΦ )( jxrΦ⋅ . For special mappings 

)(xrΦ such dot-products can be computed very efficiently using kernel functions ),( 21 xx rrκ . If a function 

),( 21 xx rrκ  satisfies mercer’s theorem, it is guaranteed to compute the inner product of the vectors 1xr  and 

after they have been mapped into a new “feature” space by some non-linear mappingΦ :           2x

),()()( 2121 xxxx rrrr κ=Φ⋅Φ  

For example, depending on the choice of kernel function, SVMs learn polynomial classifiers, radial basis 

function (RBF) classifiers, or two layer sigmoid neural nets.  
d

poly xxxxK )1(),( 2121 +⋅=
rrrr
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TFIDF classifiers and Rocchio algorithm:  

This type of classifier is based on the relevance-feedback algorithm originally proposed by Rocchio for 

vector-space retrieval model. It has been extensively used for text classification. There are many different 

implementations of the algorithm depending on the word weighting method, the document length 

normalization and the similarity measure. The most popular algorithm utilizes “tf” word weights, document 

length normalization using Euclidian vector length and cosine similarity. 

The algorithm utilize following representation of documents. Each document d is presented as a vector d
r

 

= (d1, .. , d |F|) so that the documents with similar content have similar vectors (according to a fixed metric). 

Each element di represents a distinct word w i . d i for a document d is calculated as a combination of the 

statistics TF (w i , d) and DF (w i ). The term frequency TF (w i , d) is the number of times word w i  occurs 

in document d and the document frequency DF (w i ) is the number of documents in which word wi occurs 

at least once. The inverse document frequency IDF (w i ) calculated from the document frequency.  

IDF (w i ) = log (
)(

||

iwDF
D

) 
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Here, |D| is the total number of documents. Intuitively, the inverse document frequency of the word is low 

if it occurs in many documents and is highest if the word occurs only in one. The weight d i  of the word w i  

in the document is then 

d i  = TF (w i , d) * IDF (w i )  

This word weighing heuristic says that a word w i is an important indexing term for document d if it occurs 

frequently in it (the term frequency is high). On the other hand, words which occur in many documents are 

rated less important indexing terms due to their low inverse document frequency.   

Learning is achieved by combining document vectors into a prototype vector jcr  for each class . First, 

both the normalized document vectors of the positive and negative examples for a class are summed up. 

The prototype vector is then calculated as a weighted difference of each.  
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Here, α and β are parameters that adjust the relative impact of positive and negative training examples.  

is the set of training documents assigned to class j and || d

jC
r

|| denotes the Euclidian length of a vector d
r

.   

 

Naïve Bayes Classification:  

Naïve Bayes is a simple text classification algorithm for learning from labelled data. The parameterisation 

given by naïve Bayes defines an underlying generative model assumed by the classifier. In this model, the 

class is first selected according to class prior probabilities. Then, the generator creates each word in a 

document by drawing from a multinomial distribution over words specific to the class. Thus, this model 

assumes each word in a document generated independently of the others given the class.     

Naïve Bayes forms maximum a posteriori estimates for the class-conditional probabilities for each 

word in the vocabulary V, from labelled training data D. This is done by counting frequency that word 

occurs in all word occurrences for document d i  in class c , supplemented with Laplace smoothing to 

avoid probabilities of zero.  
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 where, is count of number of times word  occurs in document , and 

as given by the class label.  
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The prior probabilities of each class are calculated in a similar fashion, counting over documents instead of 

words.  
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At the classification time we use these estimated parameters by applying Bayes’s rule to calculate the 

probability of each class label and taking the most probable class as the prediction. This makes use of the 

naïve Bayes independence assumption, which states that word occurs independently of each other, given 

the class of the document. 
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The overly-string word independence assumption causes naïve Bayes to predict extreme (nearly 0 or 1) 

posterior class probabilities. However, while these estimates are poor, naïve Bayes classification accuracy 

is typically high. This can be explained in part because classification is only a function of which class has 

the maximum posterior, and is not concerned with its actual value. 

 

Classification by Expectation Maximization:  

If we extend the supervised learning setting to include unlabeled data, the naïve Bayes equations presented 

above are no longer adequate to find maximum a posteriori parameter estimates. The Expectation-

Maximization (EM) technique can be used to find local maximum parameter estimates.   

EM is an iterative statistical technique for maximum likelihood estimation in problems with incomplete 

data. Given a model of data generation, and data with some missing values, EM will locally maximize the 

likelihood of the parameters and give estimates for missing values. The naïve Bayes generative model 

allows for the application of EM for parameter estimations.  

In implementation, EM is an iterative two-step process. Initial parameter estimates are set using standard 

naïve Bayes from just labelled documents. Then we iterate E- and M-steps. The E-step calculates 

probabilistically-weighted class labels,   using the equation above for every unlabeled 

document. The M-step estimates new classifier parameters using all documents, by first two equations, 

where  is continuous as given by the E-step. We iterate the E- and M-steps until the classifier is 

converged. Thus, this classifier can significantly increase text classification accuracy, when given limited 

amount of labelled data.  

)|( ij dcP

)|( ij dcP

 

Maximum Entropy classifier:  

The motivating idea behind maximum entropy is that one should prefer the most uniform models that also 

satisfy any given constraints. For document classification, the task is to learn conditional distribution of 

class from documents labelled with class. More specifically, we use training data to set constraints on the 

conditional distribution. Each constraint expresses a characteristic of the training data that should also be 
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present in the learned distribution. We let any real-valued function of the document and the class be a 

feature, . Maximum entropy allows us to restrict the model distribution to have the same expected 

value for this feature as seen in the training data, | |. Thus, the learned conditional distribution P( ) 

must have the property  
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In practice, the document distribution  is unknown and we use training data without class labels, as 

an approximation to the document distribution and enforce the constraint 
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Thus, while using maximum entropy, the first step is to identify set of feature functions that will be useful 

for classification. Then for each feature, measure its expected value over the training data and take this to 

be a constraint for the model distribution. 

 

K-Nearest Neighbour (KNN) classifier:  

KNN classifier is an instance-based learning algorithm that is based on a distance function for pairs of 

observations, such as the Euclidian distance or Cosine. In this classification paradigm, k nearest neighbours 

are computed first  Then similarities of one sample from testing data to the k nearest neighbours are 

aggregated according to class of the neighbours, and testing sample is assigned to most similar class. One 

of the advantages of KNN is that it is well suited for multi-modal classes as its classification decision is 

based on a small neighbourhood of similar objects (i.e. the major classes). So, even if the target class is 

multi-modal (i.e., consists of objects whose independent variables have different characteristics for 

different subsets), it can still give a good accuracy. A major drawback of the similarity measure used in 

KNN is that it uses all features equally in computing similarities. This can lead to poor similarity measures 

and classification errors, when only a small subset of the features is useful for classification.  
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Appendix C 

 

3. Predicates present in PASBio 

 

Group A : same sense, more arguments 

alter, begin, develop, disrupt, inhibit, initiate, mutate, proliferate, skip 

Group B : same sense, less arguments 

Generate, block, decrease, lose, modify 

Group C : same sense, same structure 

abolish, confer, eliminate, lead to, result, delete 

Group D : different sense or not occur 

Splice, express, truncate, translate, encode, transform, catalyse, transcribe, recognize 

Table 7.31: predicates present in PASBio 
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